Conformal Differential Geometry And Its Generalizations
Download Conformal Differential Geometry And Its Generalizations full books in PDF, epub, and Kindle. Read online free Conformal Differential Geometry And Its Generalizations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Maks A. Akivis |
Publisher | : John Wiley & Sons |
Total Pages | : 404 |
Release | : 2011-09-20 |
Genre | : Mathematics |
ISBN | : 1118030885 |
Comprehensive coverage of the foundations, applications, recent developments, and future of conformal differential geometry Conformal Differential Geometry and Its Generalizations is the first and only text that systematically presents the foundations and manifestations of conformal differential geometry. It offers the first unified presentation of the subject, which was established more than a century ago. The text is divided into seven chapters, each containing figures, formulas, and historical and bibliographical notes, while numerous examples elucidate the necessary theory. Clear, focused, and expertly synthesized, Conformal Differential Geometry and Its Generalizations * Develops the theory of hypersurfaces and submanifolds of any dimension of conformal and pseudoconformal spaces. * Investigates conformal and pseudoconformal structures on a manifold of arbitrary dimension, derives their structure equations, and explores their tensor of conformal curvature. * Analyzes the real theory of four-dimensional conformal structures of all possible signatures. * Considers the analytic and differential geometry of Grassmann and almost Grassmann structures. * Draws connections between almost Grassmann structures and web theory. Conformal differential geometry, a part of classical differential geometry, was founded at the turn of the century and gave rise to the study of conformal and almost Grassmann structures in later years. Until now, no book has offered a systematic presentation of the multidimensional conformal differential geometry and the conformal and almost Grassmann structures. After years of intense research at their respective universities and at the Soviet School of Differential Geometry, Maks A. Akivis and Vladislav V. Goldberg have written this well-conceived, expertly executed volume to fill a void in the literature. Dr. Akivis and Dr. Goldberg supply a deep foundation, applications, numerous examples, and recent developments in the field. Many of the findings that fill these pages are published here for the first time, and previously published results are reexamined in a unified context. The geometry and theory of conformal and pseudoconformal spaces of arbitrary dimension, as well as the theory of Grassmann and almost Grassmann structures, are discussed and analyzed in detail. The topics covered not only advance the subject itself, but pose important questions for future investigations. This exhaustive, groundbreaking text combines the classical results and recent developments and findings. This volume is intended for graduate students and researchers of differential geometry. It can be especially useful to those students and researchers who are interested in conformal and Grassmann differential geometry and their applications to theoretical physics.
Author | : Udo Hertrich-Jeromin |
Publisher | : Cambridge University Press |
Total Pages | : 436 |
Release | : 2003-08-14 |
Genre | : Mathematics |
ISBN | : 9780521535694 |
This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.
Author | : Maks A. Akivis |
Publisher | : Springer Science & Business Media |
Total Pages | : 272 |
Release | : 2006-04-18 |
Genre | : Mathematics |
ISBN | : 0387215115 |
This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.
Author | : R.W. Sharpe |
Publisher | : Springer Science & Business Media |
Total Pages | : 452 |
Release | : 2000-11-21 |
Genre | : Mathematics |
ISBN | : 9780387947327 |
Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.
Author | : David A. Cox |
Publisher | : John Wiley & Sons |
Total Pages | : 372 |
Release | : 2011-10-24 |
Genre | : Mathematics |
ISBN | : 1118031008 |
Modern number theory began with the work of Euler and Gauss to understand and extend the many unsolved questions left behind by Fermat. In the course of their investigations, they uncovered new phenomena in need of explanation, which over time led to the discovery of field theory and its intimate connection with complex multiplication. While most texts concentrate on only the elementary or advanced aspects of this story, Primes of the Form x2 + ny2 begins with Fermat and explains how his work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. Further, the book shows how the results of Euler and Gauss can be fully understood only in the context of class field theory. Finally, in order to bring class field theory down to earth, the book explores some of the magnificent formulas of complex multiplication. The central theme of the book is the story of which primes p can be expressed in the form x2 + ny2. An incomplete answer is given using quadratic forms. A better though abstract answer comes from class field theory, and finally, a concrete answer is provided by complex multiplication. Along the way, the reader is introduced to some wonderful number theory. Numerous exercises and examples are included. The book is written to be enjoyed by readers with modest mathematical backgrounds. Chapter 1 uses basic number theory and abstract algebra, while chapters 2 and 3 require Galois theory and complex analysis, respectively.
Author | : Zofia Adamowicz |
Publisher | : John Wiley & Sons |
Total Pages | : 276 |
Release | : 2011-09-26 |
Genre | : Mathematics |
ISBN | : 1118030796 |
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Author | : Frank Burk |
Publisher | : John Wiley & Sons |
Total Pages | : 314 |
Release | : 2011-10-14 |
Genre | : Mathematics |
ISBN | : 1118030982 |
A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.
Author | : Vicente Cortés |
Publisher | : European Mathematical Society |
Total Pages | : 972 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 9783037190791 |
The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.
Author | : Toshiyuki Kobayashi |
Publisher | : Springer |
Total Pages | : 191 |
Release | : 2016-10-11 |
Genre | : Mathematics |
ISBN | : 9811026572 |
This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1). The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulæ in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin–Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established. The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between C∞-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well. This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
Author | : Myron B. Allen, III |
Publisher | : John Wiley & Sons |
Total Pages | : 512 |
Release | : 2011-09-30 |
Genre | : Mathematics |
ISBN | : 1118030273 |
Written for graduate students in applied mathematics, engineering and science courses, the purpose of this book is to present topics in "Numerical Analysis" and "Numerical Methods." It will combine the material of both these areas as well as special topics in modern applications. Included at the end of each chapter are a variety of theoretical and computational exercises.