Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
Total Pages: 356
Release: 2007-01-01
Genre: Mathematics
ISBN: 9780898717839

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Partial Differential Equations

Partial Differential Equations
Author: J. Necas
Publisher: Routledge
Total Pages: 364
Release: 2018-05-04
Genre: Mathematics
ISBN: 1351425862

As a satellite conference of the 1998 International Mathematical Congress and part of the celebration of the 650th anniversary of Charles University, the Partial Differential Equations Theory and Numerical Solution conference was held in Prague in August, 1998. With its rich scientific program, the conference provided an opportunity for almost 200 participants to gather and discuss emerging directions and recent developments in partial differential equations (PDEs). This volume comprises the Proceedings of that conference. In it, leading specialists in partial differential equations, calculus of variations, and numerical analysis present up-to-date results, applications, and advances in numerical methods in their fields. Conference organizers chose the contributors to bring together the scientists best able to present a complex view of problems, starting from the modeling, passing through the mathematical treatment, and ending with numerical realization. The applications discussed include fluid dynamics, semiconductor technology, image analysis, motion analysis, and optimal control. The importance and quantity of research carried out around the world in this field makes it imperative for researchers, applied mathematicians, physicists and engineers to keep up with the latest developments. With its panel of international contributors and survey of the recent ramifications of theory, applications, and numerical methods, Partial Differential Equations: Theory and Numerical Solution provides a convenient means to that end.

Ordinary Differential Equations

Ordinary Differential Equations
Author: Philip Hartman
Publisher: SIAM
Total Pages: 612
Release: 1982-01-01
Genre: Mathematics
ISBN: 9780898719222

Ordinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, this book presents the basic theory of ODEs in a general way. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory of differential equations and dynamical systems. In particular, Ordinary Differential Equations includes the proof of the Hartman-Grobman theorem on the equivalence of a nonlinear to a linear flow in the neighborhood of a hyperbolic stationary point, as well as theorems on smooth equivalences, the smoothness of invariant manifolds, and the reduction of problems on ODEs to those on "maps" (Poincaré). Audience: readers should have knowledge of matrix theory and the ability to deal with functions of real variables.

Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations
Author: Arnulf Jentzen
Publisher: SIAM
Total Pages: 224
Release: 2011-12-08
Genre: Mathematics
ISBN: 1611972000

This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with H?lder continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

New Serial Titles

New Serial Titles
Author:
Publisher:
Total Pages: 1644
Release: 1993
Genre: Periodicals
ISBN:

A union list of serials commencing publication after Dec. 31, 1949.

From Particle Systems to Partial Differential Equations

From Particle Systems to Partial Differential Equations
Author: Patrícia Gonçalves
Publisher: Springer
Total Pages: 0
Release: 2018-12-31
Genre: Science
ISBN: 9783319996882

This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations V, which was held at the University of Minho, Braga, Portugal, from the 28th to 30th November 2016. It includes papers on mathematical problems motivated by various applications in physics, engineering, economics, chemistry, and biology. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. The book appeals to probabilists, analysts and also to mathematicians in general whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to physicists working in the area of statistical mechanics and kinetic theory.