Concepts From Tensor Analysis And Differential Geometry Second Edition
Download Concepts From Tensor Analysis And Differential Geometry Second Edition full books in PDF, epub, and Kindle. Read online free Concepts From Tensor Analysis And Differential Geometry Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tracy Y. Thomas |
Publisher | : Elsevier |
Total Pages | : 128 |
Release | : 2016-06-03 |
Genre | : Mathematics |
ISBN | : 1483263711 |
Concepts from Tensor Analysis and Differential Geometry discusses coordinate manifolds, scalars, vectors, and tensors. The book explains some interesting formal properties of a skew-symmetric tensor and the curl of a vector in a coordinate manifold of three dimensions. It also explains Riemann spaces, affinely connected spaces, normal coordinates, and the general theory of extension. The book explores differential invariants, transformation groups, Euclidean metric space, and the Frenet formulae. The text describes curves in space, surfaces in space, mixed surfaces, space tensors, including the formulae of Gaus and Weingarten. It presents the equations of two scalars K and Q which can be defined over a regular surface S in a three dimensional Riemannian space R. In the equation, the scalar K, which is an intrinsic differential invariant of the surface S, is known as the total or Gaussian curvature and the scalar U is the mean curvature of the surface. The book also tackles families of parallel surfaces, developable surfaces, asymptotic lines, and orthogonal ennuples. The text is intended for a one-semester course for graduate students of pure mathematics, of applied mathematics covering subjects such as the theory of relativity, fluid mechanics, elasticity, and plasticity theory.
Author | : PRASUN KUMAR NAYAK |
Publisher | : PHI Learning Pvt. Ltd. |
Total Pages | : 551 |
Release | : 2011-12-23 |
Genre | : Mathematics |
ISBN | : 812034507X |
Primarily intended for the undergraduate and postgraduate students of mathematics, this textbook covers both geometry and tensor in a single volume. This book aims to provide a conceptual exposition of the fundamental results in the theory of tensors. It also illustrates the applications of tensors to differential geometry, mechanics and relativity. Organized in ten chapters, it provides the origin and nature of the tensor along with the scope of the tensor calculus. Besides this, it also discusses N-dimensional Riemannian space, characteristic peculiarity of Riemannian space, intrinsic property of surfaces, and properties and transformation of Christoffel’s symbols. Besides the students of mathematics, this book will be equally useful for the postgraduate students of physics. KEY FEATURES : Contains 250 worked out examples Includes more than 350 unsolved problems Gives thorough foundation in Tensors
Author | : Richard L. Bishop |
Publisher | : Courier Corporation |
Total Pages | : 290 |
Release | : 2012-04-26 |
Genre | : Mathematics |
ISBN | : 0486139239 |
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Author | : Wolfgang Kühnel |
Publisher | : American Mathematical Soc. |
Total Pages | : 394 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 0821839888 |
Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Author | : I. S. Sokolnikoff |
Publisher | : |
Total Pages | : |
Release | : 1964 |
Genre | : |
ISBN | : |
Author | : David Lovelock |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2012-04-20 |
Genre | : Mathematics |
ISBN | : 048613198X |
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Author | : Paul Renteln |
Publisher | : Cambridge University Press |
Total Pages | : 343 |
Release | : 2014 |
Genre | : Mathematics |
ISBN | : 1107042194 |
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Author | : Pavel Grinfeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 303 |
Release | : 2013-09-24 |
Genre | : Mathematics |
ISBN | : 1461478677 |
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Author | : A. I. Borisenko |
Publisher | : Courier Corporation |
Total Pages | : 292 |
Release | : 2012-08-28 |
Genre | : Mathematics |
ISBN | : 0486131904 |
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Author | : Jeffrey Marc Lee |
Publisher | : American Mathematical Soc. |
Total Pages | : 690 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0821848151 |
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.