Computer Architecture Techniques for Power-Efficiency

Computer Architecture Techniques for Power-Efficiency
Author: Stefanos Kaxiras
Publisher: Springer Nature
Total Pages: 207
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031017218

In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics. Table of Contents: Introduction / Modeling, Simulation, and Measurement / Using Voltage and Frequency Adjustments to Manage Dynamic Power / Optimizing Capacitance and Switching Activity to Reduce Dynamic Power / Managing Static (Leakage) Power / Conclusions

Computer Architecture Techniques for Power-efficiency

Computer Architecture Techniques for Power-efficiency
Author: Stefanos Kaxiras
Publisher: Morgan & Claypool Publishers
Total Pages: 220
Release: 2008
Genre: Computers
ISBN: 1598292080

In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics.

Power-Efficient Computer Architectures

Power-Efficient Computer Architectures
Author: Magnus Själander
Publisher: Morgan & Claypool Publishers
Total Pages: 98
Release: 2014-12-01
Genre: Computers
ISBN: 1627056467

As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture. Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Specialization / Communication and Memory Systems / Conclusions / Bibliography / Authors' Biographies

Energy Efficient High Performance Processors

Energy Efficient High Performance Processors
Author: Jawad Haj-Yahya
Publisher: Springer
Total Pages: 165
Release: 2018-04-04
Genre: Technology & Engineering
ISBN: 9789811085536

This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.

Computer Architecture

Computer Architecture
Author: John L. Hennessy
Publisher: Elsevier
Total Pages: 858
Release: 2012
Genre: Computers
ISBN: 012383872X

The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more

Energy Efficient Servers

Energy Efficient Servers
Author: Corey Gough
Publisher: Apress
Total Pages: 347
Release: 2015-04-07
Genre: Computers
ISBN: 1430266384

Energy Efficient Servers: Blueprints for Data Center Optimization introduces engineers and IT professionals to the power management technologies and techniques used in energy efficient servers. The book includes a deep examination of different features used in processors, memory, interconnects, I/O devices, and other platform components. It outlines the power and performance impact of these features and the role firmware and software play in initialization and control. Using examples from cloud, HPC, and enterprise environments, the book demonstrates how various power management technologies are utilized across a range of server utilization. It teaches the reader how to monitor, analyze, and optimize their environment to best suit their needs. It shares optimization techniques used by data center administrators and system optimization experts at the world’s most advanced data centers.

Computer Organization and Design RISC-V Edition

Computer Organization and Design RISC-V Edition
Author: David A. Patterson
Publisher: Morgan Kaufmann
Total Pages: 700
Release: 2017-05-12
Genre: Computers
ISBN: 0128122765

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud

Fault Tolerant Computer Architecture

Fault Tolerant Computer Architecture
Author: Daniel Sorin
Publisher: Springer Nature
Total Pages: 103
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017234

For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes of this book are to explore the key ideas in fault-tolerant computer architecture and to present the current state-of-the-art - over approximately the past 10 years - in academia and industry. Table of Contents: Introduction / Error Detection / Error Recovery / Diagnosis / Self-Repair / The Future

Customizable Computing

Customizable Computing
Author: Yu-Ting Chen
Publisher: Springer Nature
Total Pages: 106
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 303101748X

Since the end of Dennard scaling in the early 2000s, improving the energy efficiency of computation has been the main concern of the research community and industry. The large energy efficiency gap between general-purpose processors and application-specific integrated circuits (ASICs) motivates the exploration of customizable architectures, where one can adapt the architecture to the workload. In this Synthesis lecture, we present an overview and introduction of the recent developments on energy-efficient customizable architectures, including customizable cores and accelerators, on-chip memory customization, and interconnect optimization. In addition to a discussion of the general techniques and classification of different approaches used in each area, we also highlight and illustrate some of the most successful design examples in each category and discuss their impact on performance and energy efficiency. We hope that this work captures the state-of-the-art research and development on customizable architectures and serves as a useful reference basis for further research, design, and implementation for large-scale deployment in future computing systems.

AI for Computer Architecture

AI for Computer Architecture
Author: Lizhong Chen
Publisher: Springer Nature
Total Pages: 124
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017706

Artificial intelligence has already enabled pivotal advances in diverse fields, yet its impact on computer architecture has only just begun. In particular, recent work has explored broader application to the design, optimization, and simulation of computer architecture. Notably, machine-learning-based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This book reviews the application of machine learning in system-wide simulation and run-time optimization, and in many individual components such as caches/memories, branch predictors, networks-on-chip, and GPUs. The book further analyzes current practice to highlight useful design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly automated computer architecture designs.