Computational Methods in Solid Mechanics

Computational Methods in Solid Mechanics
Author: A. Curnier
Publisher: Springer Science & Business Media
Total Pages: 412
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 940111112X

This volume presents an introduction to the three numerical methods most commonly used in the mechanical analysis of deformable solids, viz. the finite element method (FEM), the linear iteration method (LIM), and the finite difference method (FDM). The book has been written from the point of view of simplicity and unity; its originality lies in the comparable emphasis given to the spatial, temporal and nonlinear dimensions of problem solving. This leads to a neat global algorithm. Chapter 1 addresses the problem of a one-dimensional bar, with emphasis being given to the virtual work principle. Chapters 2--4 present the three numerical methods. Although the discussion relates to a one-dimensional model, the formalism used is extendable to two-dimensional situations. Chapter 5 is devoted to a detailed discussion of the compact combination of the three methods, and contains several sections concerning their computer implementation. Finally, Chapter 6 gives a generalization to two and three dimensions of both the mechanical and numerical aspects. For graduate students and researchers whose work involves the theory and application of computational solid mechanics.

Nonlinear Computational Solid Mechanics

Nonlinear Computational Solid Mechanics
Author: Jamshid Ghaboussi
Publisher: CRC Press
Total Pages: 397
Release: 2017-07-06
Genre: Mathematics
ISBN: 1498746136

This book presents the fundamentals of nonlinear mechanics within a modern computational approach based mainly on finite element methods. Both material and geometric nonlinearities are treated. The topics build up from the mechanics of finite deformation of solid bodies through to nonlinear structural behaviour including buckling, bifurcation and snap-through. The principles are illustrated with a series of solved problems. This book serves as a text book for a second year graduate course and as a reference for practitioners using nonlinear analysis in engineering and design.

Classical and Computational Solid Mechanics

Classical and Computational Solid Mechanics
Author: Yuen-Cheng Fung
Publisher: World Scientific Publishing Company
Total Pages: 838
Release: 2016-11-30
Genre: Technology & Engineering
ISBN: 9789814713641

The second edition provides an update of the recent developments in classical and computational solid mechanics. The structure of the book is also updated to include five new areas: Fundamental Principles of Thermodynamics and Coupled Thermoelastic Constitutive Equations at Large Deformations, Functional Thermodynamics and Thermoviscoelasticity, Thermodynamics with Internal State Variables and Thermo-Elasto-Viscoplasticity, Electro-Thermo-Viscoelasticity/Viscoplasticity, and Meshless Method. These new topics are added as self-contained sections or chapters. Many books in the market do not cover these topics. This invaluable book has been written for engineers and engineering scientists in a style that is readable, precise, concise, and practical. It gives the first priority to the formulation of problems, presenting the classical results as the gold standard, and the numerical approach as a tool for obtaining solutions.

Mechanics of Solids and Structures, Second Edition

Mechanics of Solids and Structures, Second Edition
Author: Roger T. Fenner
Publisher: CRC Press
Total Pages: 707
Release: 2012-06-12
Genre: Technology & Engineering
ISBN: 1439858144

A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.

Computational Fluid and Solid Mechanics 2003

Computational Fluid and Solid Mechanics 2003
Author: K.J Bathe
Publisher: Elsevier
Total Pages: 2485
Release: 2003-06-02
Genre: Technology & Engineering
ISBN: 008052947X

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis

Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics
Author: Ugo Galvanetto
Publisher: Imperial College Press
Total Pages: 349
Release: 2010
Genre: Science
ISBN: 1848163088

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Computational Solid Mechanics

Computational Solid Mechanics
Author: Marco L. Bittencourt
Publisher: CRC Press
Total Pages: 670
Release: 2014-09-19
Genre: Science
ISBN: 1482246538

Presents a Systematic Approach for Modeling Mechanical Models Using Variational Formulation-Uses Real-World Examples and Applications of Mechanical ModelsUtilizing material developed in a classroom setting and tested over a 12-year period, Computational Solid Mechanics: Variational Formulation and High-Order Approximation details an approach that e

Mechanics of Solid Polymers

Mechanics of Solid Polymers
Author: Jorgen S Bergstrom
Publisher: William Andrew
Total Pages: 524
Release: 2015-07-11
Genre: Technology & Engineering
ISBN: 0323322964

Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work

Applied Mechanics of Solids

Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
Total Pages: 820
Release: 2009-10-05
Genre: Science
ISBN: 1439802483

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o

Computational Contact Mechanics

Computational Contact Mechanics
Author: Peter Wriggers
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2008-04-01
Genre: Science
ISBN: 3211772987

Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.