Computational Methods for Risk Management in Economics and Finance

Computational Methods for Risk Management in Economics and Finance
Author: Marina Resta
Publisher: MDPI
Total Pages: 234
Release: 2020-04-02
Genre: Business & Economics
ISBN: 3039284983

At present, computational methods have received considerable attention in economics and finance as an alternative to conventional analytical and numerical paradigms. This Special Issue brings together both theoretical and application-oriented contributions, with a focus on the use of computational techniques in finance and economics. Examined topics span on issues at the center of the literature debate, with an eye not only on technical and theoretical aspects but also very practical cases.

Risk and Financial Management

Risk and Financial Management
Author: Charles S. Tapiero
Publisher: John Wiley & Sons
Total Pages: 364
Release: 2004-04-23
Genre: Mathematics
ISBN: 9780470849088

Financial risk management has become a popular practice amongst financial institutions to protect against the adverse effects of uncertainty caused by fluctuations in interest rates, exchange rates, commodity prices, and equity prices. New financial instruments and mathematical techniques are continuously developed and introduced in financial practice. These techniques are being used by an increasing number of firms, traders and financial risk managers across various industries. Risk and Financial Management: Mathematical and Computational Methods confronts the many issues and controversies, and explains the fundamental concepts that underpin financial risk management. Provides a comprehensive introduction to the core topics of risk and financial management. Adopts a pragmatic approach, focused on computational, rather than just theoretical, methods. Bridges the gap between theory and practice in financial risk management Includes coverage of utility theory, probability, options and derivatives, stochastic volatility and value at risk. Suitable for students of risk, mathematical finance, and financial risk management, and finance practitioners. Includes extensive reference lists, applications and suggestions for further reading. Risk and Financial Management: Mathematical and Computational Methods is ideally suited to both students of mathematical finance with little background in economics and finance, and students of financial risk management, as well as finance practitioners requiring a clearer understanding of the mathematical and computational methods they use every day. It combines the required level of rigor, to support the theoretical developments, with a practical flavour through many examples and applications.

Simulation in Computational Finance and Economics: Tools and Emerging Applications

Simulation in Computational Finance and Economics: Tools and Emerging Applications
Author: Alexandrova-Kabadjova, Biliana
Publisher: IGI Global
Total Pages: 459
Release: 2012-08-31
Genre: Business & Economics
ISBN: 1466620129

Simulation has become a tool difficult to substitute in many scientific areas like manufacturing, medicine, telecommunications, games, etc. Finance is one of such areas where simulation is a commonly used tool; for example, we can find Monte Carlo simulation in many financial applications like market risk analysis, portfolio optimization, credit risk related applications, etc. Simulation in Computational Finance and Economics: Tools and Emerging Applications presents a thorough collection of works, covering several rich and highly productive areas of research including Risk Management, Agent-Based Simulation, and Payment Methods and Systems, topics that have found new motivations after the strong recession experienced in the last few years. Despite the fact that simulation is widely accepted as a prominent tool, dealing with a simulation-based project requires specific management abilities of the researchers. Economic researchers will find an excellent reference to introduce them to the computational simulation models. The works presented in this book can be used as an inspiration for economic researchers interested in creating their own computational models in their respective fields.

Numerical Methods and Optimization in Finance

Numerical Methods and Optimization in Finance
Author: Manfred Gilli
Publisher: Academic Press
Total Pages: 638
Release: 2019-08-16
Genre: Business & Economics
ISBN: 0128150653

Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.

Computational Methods in Decision-Making, Economics and Finance

Computational Methods in Decision-Making, Economics and Finance
Author: Erricos John Kontoghiorghes
Publisher: Springer Science & Business Media
Total Pages: 626
Release: 2013-11-11
Genre: Business & Economics
ISBN: 1475736134

Computing has become essential for the modeling, analysis, and optimization of systems. This book is devoted to algorithms, computational analysis, and decision models. The chapters are organized in two parts: optimization models of decisions and models of pricing and equilibria.

Computational Methods for Quantitative Finance

Computational Methods for Quantitative Finance
Author: Norbert Hilber
Publisher: Springer Science & Business Media
Total Pages: 301
Release: 2013-02-15
Genre: Mathematics
ISBN: 3642354017

Many mathematical assumptions on which classical derivative pricing methods are based have come under scrutiny in recent years. The present volume offers an introduction to deterministic algorithms for the fast and accurate pricing of derivative contracts in modern finance. This unified, non-Monte-Carlo computational pricing methodology is capable of handling rather general classes of stochastic market models with jumps, including, in particular, all currently used Lévy and stochastic volatility models. It allows us e.g. to quantify model risk in computed prices on plain vanilla, as well as on various types of exotic contracts. The algorithms are developed in classical Black-Scholes markets, and then extended to market models based on multiscale stochastic volatility, to Lévy, additive and certain classes of Feller processes. This book is intended for graduate students and researchers, as well as for practitioners in the fields of quantitative finance and applied and computational mathematics with a solid background in mathematics, statistics or economics.​

Risk Management and Simulation

Risk Management and Simulation
Author: Aparna Gupta
Publisher: CRC Press
Total Pages: 518
Release: 2016-04-19
Genre: Business & Economics
ISBN: 1439835950

The challenges of the current financial environment have revealed the need for a new generation of professionals who combine training in traditional finance disciplines with an understanding of sophisticated quantitative and analytical tools. Risk Management and Simulation shows how simulation modeling and analysis can help you solve risk managemen

Financial Risk Forecasting

Financial Risk Forecasting
Author: Jon Danielsson
Publisher: John Wiley & Sons
Total Pages: 307
Release: 2011-04-20
Genre: Business & Economics
ISBN: 1119977118

Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.

Introduction to Computational Economics Using Fortran

Introduction to Computational Economics Using Fortran
Author: Hans Fehr
Publisher:
Total Pages: 264
Release: 2020
Genre: Business & Economics
ISBN: 0198850379

This exercise and solutions manual accompanies the main edition of Introduction to Computational Economics Using Fortran. It enables students of all levels to practice the skills and knowledge needed to conduct economic research using Fortran. Introduction to Computational Economics Using Fortran is the essential guide to conducting economic research on a computer. Aimed at students of all levels of education as well as advanced economic researchers, it facilitates the first steps into writing programming language. This exercise and solutions manual is accompanied by a program database that readers are able to download.

Computational Methods in Finance

Computational Methods in Finance
Author: Ali Hirsa
Publisher: CRC Press
Total Pages: 440
Release: 2016-04-19
Genre: Business & Economics
ISBN: 1466576049

Helping readers accurately price a vast array of derivatives, this self-contained text explains how to solve complex functional equations through numerical methods. It addresses key computational methods in finance, including transform techniques, the finite difference method, and Monte Carlo simulation. Developed from his courses at Columbia University and the Courant Institute of New York University, the author also covers model calibration and optimization and describes techniques, such as Kalman and particle filters, for parameter estimation.