Computational Methods And Experiments In Materials Characterization Iii
Download Computational Methods And Experiments In Materials Characterization Iii full books in PDF, epub, and Kindle. Read online free Computational Methods And Experiments In Materials Characterization Iii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : C. A. Brebbia |
Publisher | : WIT Press |
Total Pages | : 465 |
Release | : 2007 |
Genre | : Technology & Engineering |
ISBN | : 1845640802 |
Until recently, engineering materials could be characterized successfully using relatively simple testing procedures. As materials technology advances, interest is growing in materials possessing complex meso-, micro- and nano-structures, which to a large extent determine their physical properties and behaviour. The purposes of materials modelling are many: optimization, investigation of failure, simulation of production processes, to name but a few. Modelling and characterisation are closely intertwined, increasingly so as the complexity of the material increases. Characterisation, in essence, is the connection between the abstract material model and the real-world behaviour of the material in question. Characterisation of complex materials therefore may require a combination of experimental techniques and computation. This book publishes papers presented at the Third International Conference on Computational Methods and Experiments in Material Characterisation.Topics covered include: Composites; Ceramics; Alloys; Cements and Cement Based Materials; Biomaterials; Thin Films and Coatings; Advanced Materials; Imaging Analysis; Thermal Analysis; New Methods; Surface Chemistry, Nano Indentation; Continuum Methods; Particle Models; Damage Mechanics; Innovative Techniques; Stochastic Methods.
Author | : C. A. Brebbia |
Publisher | : WIT Press |
Total Pages | : 369 |
Release | : 2005 |
Genre | : Technology & Engineering |
ISBN | : 1845640314 |
Bringing together the work of practitioners in many fields of engineering, materials and computational science, this book includes most of the papers presented at the Second International Conference on Material Characterisation. Compiled with the central aim of encouraging interaction between experimentalists and modelers, the contributions featured are divided under the following sections: MICROSTRUCTURES ? Composites; Alloys; Ceramics; Cements; Foams; Suspensions; Biomaterials; Thin Films; Coatings. EXPERIMENTAL METHODS - Optical Imaging; SEM, TEM; X-Ray Microtomography; Ultrasonic Techniques; NMR/MRI; Micro/Nano Indentation; Thermal Analysis; Surface Chemistry. COMPUTATIONAL METHODS - Continuum Methods (FEM, FV, BEM); Particle Models (MD, DPD, Lattice-Boltzmann); Montecarlo Methods; Cellular Automata; Hybrid Multiscale Methods; and Damage Mechanics.
Author | : Oleksandr V. Reshetnyak |
Publisher | : CRC Press |
Total Pages | : 560 |
Release | : 2017-03-27 |
Genre | : Science |
ISBN | : 177188343X |
This book looks at the synthesis of polyaniline by different methods, under different conditions, for various applications, and presents studies of its properties by a wide range of the modern physic-chemical methods. The book provides a comprehensive analysis of experimental results from the point of view of the correlations in the triad synthesis conditions–structurephysico–chemical properties. It combines the results of experimental investigations and original methodology of the description of physical–chemical and electrochemical phenomena at interface surfaces, showing an influence of such phenomena on the applied aspects of the polyaniline and nanocomposites on its basis applications.
Author | : Eui-Hyeok Yang |
Publisher | : Elsevier |
Total Pages | : 502 |
Release | : 2020-06-19 |
Genre | : Technology & Engineering |
ISBN | : 0128184760 |
Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials
Author | : Jeffrey Olafsen |
Publisher | : Cambridge University Press |
Total Pages | : 339 |
Release | : 2010-09-02 |
Genre | : Science |
ISBN | : 113948981X |
Soft condensed matter physics relies on a fundamental understanding at the interface between physics, chemistry, biology, and engineering for a host of materials and circumstances that are related to, but outside, the traditional definition of condensed matter physics. Featuring contributions from leading researchers in the field, this book uniquely discusses both the contemporary experimental and computational manifestations of soft condensed matter systems. From particle tracking and image analysis, novel materials and computational methods, to confocal microscopy and bacterial assays, this book will equip the reader for collaborative and interdisciplinary research efforts relating to a range of modern problems in nonlinear and non-equilibrium systems. It will enable both graduate students and experienced researchers to supplement a more traditional understanding of thermodynamics and statistical systems with knowledge of the techniques used in contemporary investigations. Color versions of a selection of the figures are available at www.cambridge.org/9780521115902.
Author | : Somnath Ghosh |
Publisher | : Springer Nature |
Total Pages | : 416 |
Release | : 2020-03-20 |
Genre | : Technology & Engineering |
ISBN | : 3030405621 |
This book introduces research advances in Integrated Computational Materials Engineering (ICME) that have taken place under the aegis of the AFOSR/AFRL sponsored Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University. Its author team consists of leading researchers in ICME from prominent academic institutions and the Air Force Research Laboratory. The book examines state-of-the-art advances in physics-based, multi-scale, computational-experimental methods and models for structural materials like polymer-matrix composites and metallic alloys. The book emphasizes Ni-based superalloys and epoxy matrix carbon-fiber composites and encompasses atomistic scales, meso-scales of coarse-grained models and discrete dislocations, and micro-scales of poly-phase and polycrystalline microstructures. Other critical phenomena investigated include the relationship between microstructural morphology, crystallography, and mechanisms to the material response at different scales; methods of identifying representative volume elements using microstructure and material characterization, and robust deterministic and probabilistic modeling of deformation and damage. Encompassing a slate of topics that enable readers to comprehend and approach ICME-related issues involved in predicting material performance and failure, the book is ideal for mechanical, civil, and aerospace engineers, and materials scientists, in in academic, government, and industrial laboratories.
Author | : Nenad Mitrovic |
Publisher | : Springer Nature |
Total Pages | : 384 |
Release | : 2021-11-18 |
Genre | : Technology & Engineering |
ISBN | : 3030860094 |
The book is a collection of high-quality peer-reviewed research papers presented at the International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech2021) held at Zlatibor, Serbia, from June 29 to July 2, 2021. The book discusses a wide variety of industrial, engineering, and scientific applications of the engineering techniques. Researchers from academia and industry present their original work and exchange ideas, experiences, information, techniques, applications, and innovations in the field of mechanical engineering, materials science, chemical and process engineering, experimental techniques, numerical methods, and new technologies.
Author | : G. M. Carlomagno |
Publisher | : WIT Press |
Total Pages | : 737 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 1845645405 |
Containing edited versions of most of the papers presented at the Fifteenth International Conference on Computational Methods and Experimental Measurements, this book reviews the latest work on these two approaches, and the interaction between them.
Author | : June Gunn Lee |
Publisher | : CRC Press |
Total Pages | : 365 |
Release | : 2016-11-25 |
Genre | : Science |
ISBN | : 1498749755 |
This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.
Author | : Y. Villacampa |
Publisher | : WIT Press |
Total Pages | : 243 |
Release | : 2018-03-28 |
Genre | : Mathematics |
ISBN | : 1784663093 |
Comprising specially selected papers on the subject of Computational Methods and Experimental Measurements, this book includes research from scientists, researchers and specialists who perform experiments, develop computer codes and carry out measurements on prototypes. Improvements relating to computational methods have generated an ever-increasing expansion of computational simulations that permeate all fields of science and technology. Validating the results of these improvements can be achieved by carrying out committed and accurate experiments, which have undertaken continuous development. Current experimental techniques have become more complex and sophisticated so that they require the intensive use of computers, both for running experiments as well as acquiring and processing the resulting data. This title explores new experimental and computational methods and covers various topics such as: Computer-aided Models; Image Analysis Applications; Noise Filtration of Shockwave Propagation; Finite Element Simulations.