Computational Intelligence in Cancer Diagnosis

Computational Intelligence in Cancer Diagnosis
Author: Janmenjoy Nayak
Publisher: Academic Press
Total Pages: 422
Release: 2023-04-12
Genre: Science
ISBN: 0323903533

Computational Intelligence in Cancer Diagnosis: Progress and Challenges provides insights into the current strength and weaknesses of different applications and research findings on computational intelligence in cancer research. The book improves the exchange of ideas and coherence among various computational intelligence methods and enhances the relevance and exploitation of application areas for both experienced and novice end-users. Topics discussed include neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. The book's chapters are written by international experts from both cancer research, oncology and computational sides to cover different aspects and make it comprehensible for readers with no background on informatics. - Contains updated information about advanced computational intelligence, spanning the areas of neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems in diagnosing cancer diseases - Discusses several cancer types, including their detection, treatment and prevention - Presents case studies that illustrate the applications of intelligent computing in data analysis to help readers to analyze and advance their research in cancer

Artificial Intelligence in Cancer

Artificial Intelligence in Cancer
Author: Smaranda Belciug
Publisher: Academic Press
Total Pages: 310
Release: 2020-06-18
Genre: Science
ISBN: 0128204109

Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment provides theoretical concepts and practical techniques of AI and its applications in cancer management, building a roadmap on how to use AI in cancer at different stages of healthcare. It discusses topics such as the impactful role of AI during diagnosis and how it can support clinicians to make better decisions, AI tools to help pathologists identify exact types of cancer, how AI supports tumor profiling and can assist surgeons, and the gains in precision for oncologists using AI tools. Additionally, it provides information on AI used for survival and remission/recurrence analysis. The book is a valuable source for bioinformaticians, cancer researchers, oncologists, clinicians and members of the biomedical field who want to understand the promising field of AI applications in cancer management. - Discusses over 20 real cancer examples, bringing state-of-the-art cancer cases in which AI was used to help the medical personnel - Presents over 100 diagrams, making it easier to comprehend AI's results on a specific problem through visual resources - Explains AI algorithms in a friendly manner, thus helping the reader implement or use them in a specific cancer case

Mathematical and Computational Oncology

Mathematical and Computational Oncology
Author: George Bebis
Publisher: Springer Nature
Total Pages: 91
Release: 2021-12-11
Genre: Computers
ISBN: 3030912418

This book constitutes the refereed proceedings of the Third International Symposium on Mathematical and Computational Oncology, ISMCO 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 3 full papers and 4 short papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; spatio-temporal tumor modeling and simulation; general cancer computational biology; mathematical modeling for cancer research; computational methods for anticancer drug development.

Deep Learning for Cancer Diagnosis

Deep Learning for Cancer Diagnosis
Author: Utku Kose
Publisher: Springer Nature
Total Pages: 311
Release: 2020-09-12
Genre: Technology & Engineering
ISBN: 9811563217

This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.

Healthcare and Artificial Intelligence

Healthcare and Artificial Intelligence
Author: Bernard Nordlinger
Publisher: Springer Nature
Total Pages: 275
Release: 2020-03-17
Genre: Technology & Engineering
ISBN: 3030321614

This book provides an overview of the role of AI in medicine and, more generally, of issues at the intersection of mathematics, informatics, and medicine. It is intended for AI experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious about this timely and important subject. Its goal is to provide clear, objective, and reasonable information on the issues covered, avoiding any fantasies that the topic “AI” might evoke. In addition, the book seeks to provide a broad kaleidoscopic perspective, rather than deep technical details.

Computational Molecular Magnetic Resonance Imaging for Neuro-oncology

Computational Molecular Magnetic Resonance Imaging for Neuro-oncology
Author: Michael O. Dada
Publisher: Springer Nature
Total Pages: 412
Release: 2021-07-31
Genre: Science
ISBN: 3030767280

Based on the analytical methods and the computer programs presented in this book, all that may be needed to perform MRI tissue diagnosis is the availability of relaxometric data and simple computer program proficiency. These programs are easy to use, highly interactive and the data processing is fast and unambiguous. Laboratories (with or without sophisticated facilities) can perform computational magnetic resonance diagnosis with only T1 and T2 relaxation data. The results have motivated the use of data to produce data-driven predictions required for machine learning, artificial intelligence (AI) and deep learning for multidisciplinary and interdisciplinary research. Consequently, this book is intended to be very useful for students, scientists, engineers, the medical personnel and researchers who are interested in developing new concepts for deeper appreciation of computational magnetic resonance imaging for medical diagnosis, prognosis, therapy and management of tissue diseases.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
Total Pages: 369
Release: 2019-01-29
Genre: Medical
ISBN: 3319948784

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Artificial Intelligence in Medicine

Artificial Intelligence in Medicine
Author: Lei Xing
Publisher: Academic Press
Total Pages: 570
Release: 2020-09-03
Genre: Medical
ISBN: 0128212586

Artificial Intelligence Medicine: Technical Basis and Clinical Applications presents a comprehensive overview of the field, ranging from its history and technical foundations, to specific clinical applications and finally to prospects. Artificial Intelligence (AI) is expanding across all domains at a breakneck speed. Medicine, with the availability of large multidimensional datasets, lends itself to strong potential advancement with the appropriate harnessing of AI. The integration of AI can occur throughout the continuum of medicine: from basic laboratory discovery to clinical application and healthcare delivery. Integrating AI within medicine has been met with both excitement and scepticism. By understanding how AI works, and developing an appreciation for both limitations and strengths, clinicians can harness its computational power to streamline workflow and improve patient care. It also provides the opportunity to improve upon research methodologies beyond what is currently available using traditional statistical approaches. On the other hand, computers scientists and data analysts can provide solutions, but often lack easy access to clinical insight that may help focus their efforts. This book provides vital background knowledge to help bring these two groups together, and to engage in more streamlined dialogue to yield productive collaborative solutions in the field of medicine. - Provides history and overview of artificial intelligence, as narrated by pioneers in the field - Discusses broad and deep background and updates on recent advances in both medicine and artificial intelligence that enabled the application of artificial intelligence - Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach

Handbook of Computational Intelligence in Biomedical Engineering and Healthcare

Handbook of Computational Intelligence in Biomedical Engineering and Healthcare
Author: Janmenjoy Nayak
Publisher: Academic Press
Total Pages: 398
Release: 2021-04-08
Genre: Science
ISBN: 0128222611

Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives