Computational Intelligence in Multi-Feature Visual Pattern Recognition

Computational Intelligence in Multi-Feature Visual Pattern Recognition
Author: Pramod Kumar Pisharady
Publisher: Springer
Total Pages: 142
Release: 2014-05-23
Genre: Technology & Engineering
ISBN: 9812870563

This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good inter class discrimination. A Bayesian model of visual attention is described which is effective in handling complex background problem in hand posture recognition. The book provides qualitative and quantitative performance comparisons for the algorithms outlined, with other standard methods in machine learning and computer vision. The book is self-contained with several figures, charts, tables and equations helping the reader to understand the material presented without instruction.

Supervised and Unsupervised Pattern Recognition

Supervised and Unsupervised Pattern Recognition
Author: Evangelia Miche Tzanakou
Publisher: CRC Press
Total Pages: 475
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1351835556

There are many books on neural networks, some of which cover computational intelligence, but none that incorporate both feature extraction and computational intelligence, as Supervised and Unsupervised Pattern Recognition does. This volume describes the application of a novel, unsupervised pattern recognition scheme to the classification of various types of waveforms and images. This substantial collection of recent research begins with an introduction to Neural Networks, classifiers, and feature extraction methods. It then addresses unsupervised and fuzzy neural networks and their applications to handwritten character recognition and recognition of normal and abnormal visual evoked potentials. The third section deals with advanced neural network architectures-including modular design-and their applications to medicine and three-dimensional NN architecture simulating brain functions. The final section discusses general applications and simulations, such as the establishment of a brain-computer link, speaker identification, and face recognition. In the quickly changing field of computational intelligence, every discovery is significant. Supervised and Unsupervised Pattern Recognition gives you access to many notable findings in one convenient volume.

Computational Intelligence in Pattern Recognition

Computational Intelligence in Pattern Recognition
Author: Asit Kumar Das
Publisher: Springer
Total Pages: 1023
Release: 2019-08-17
Genre: Technology & Engineering
ISBN: 9811390428

This book presents practical development experiences in different areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.

Applications of Computational Intelligence in Multi-Disciplinary Research

Applications of Computational Intelligence in Multi-Disciplinary Research
Author: Ahmed A. Elngar
Publisher: Academic Press
Total Pages: 222
Release: 2022-02-14
Genre: Science
ISBN: 0128241764

Applications of Computational Intelligence in Multi-Disciplinary Research provides the readers with a comprehensive handbook for applying the powerful principles, concepts, and algorithms of computational intelligence to a wide spectrum of research cases. The book covers the main approaches used in computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods, all of which can be collectively viewed as soft computing. Other key approaches included are swarm intelligence and artificial immune systems. These approaches provide researchers with powerful tools for analysis and problem-solving when data is incomplete and when the problem under consideration is too complex for standard mathematics and the crisp logic approach of Boolean computing. - Provides an overview of the key methods of computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods - Includes case studies and real-world examples of computational intelligence applied in a variety of research topics, including bioinformatics, biomedical engineering, big data analytics, information security, signal processing, machine learning, nanotechnology, and optimization techniques - Presents a thorough technical explanation on how computational intelligence is applied that is suitable for a wide range of multidisciplinary and interdisciplinary research

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
Total Pages: 0
Release: 2016-08-23
Genre: Computers
ISBN: 9781493938438

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)
Author: Chi Hau Chen
Publisher: World Scientific
Total Pages: 1045
Release: 1999-03-12
Genre: Computers
ISBN: 9814497649

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Advances in Computational Intelligence

Advances in Computational Intelligence
Author: Ignacio Rojas
Publisher: Springer
Total Pages: 772
Release: 2017-06-04
Genre: Computers
ISBN: 3319591479

This two-volume set LNCS 10305 and LNCS 10306 constitutes the refereed proceedings of the 14th International Work-Conference on Artificial Neural Networks, IWANN 2017, held in Cadiz, Spain, in June 2017. The 126 revised full papers presented in this double volume were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on Bio-inspired Computing; E-Health and Computational Biology; Human Computer Interaction; Image and Signal Processing; Mathematics for Neural Networks; Self-organizing Networks; Spiking Neurons; Artificial Neural Networks in Industry ANNI'17; Computational Intelligence Tools and Techniques for Biomedical Applications; Assistive Rehabilitation Technology; Computational Intelligence Methods for Time Series; Machine Learning Applied to Vision and Robotics; Human Activity Recognition for Health and Well-Being Applications; Software Testing and Intelligent Systems; Real World Applications of BCI Systems; Machine Learning in Imbalanced Domains; Surveillance and Rescue Systems and Algorithms for Unmanned Aerial Vehicles; End-User Development for Social Robotics; Artificial Intelligence and Games; and Supervised, Non-Supervised, Reinforcement and Statistical Algorithms.

Cognitive and Neural Modelling for Visual Information Representation and Memorization

Cognitive and Neural Modelling for Visual Information Representation and Memorization
Author: Limiao Deng
Publisher: CRC Press
Total Pages: 183
Release: 2022-04-24
Genre: Computers
ISBN: 1000574652

Focusing on how visual information is represented, stored and extracted in the human brain, this book uses cognitive neural modeling in order to show how visual information is represented and memorized in the brain. Breaking through traditional visual information processing methods, the author combines our understanding of perception and memory from the human brain with computer vision technology, and provides a new approach for image recognition and classification. While biological visual cognition models and human brain memory models are established, applications such as pest recognition and carrot detection are also involved in this book. Given the range of topics covered, this book is a valuable resource for students, researchers and practitioners interested in the rapidly evolving field of neurocomputing, computer vision and machine learning.