Computational Intelligence and Feature Selection

Computational Intelligence and Feature Selection
Author: Richard Jensen
Publisher: John Wiley & Sons
Total Pages: 357
Release: 2008-10-03
Genre: Computers
ISBN: 0470377917

The rough and fuzzy set approaches presented here open up many new frontiers for continued research and development Computational Intelligence and Feature Selection provides readers with the background and fundamental ideas behind Feature Selection (FS), with an emphasis on techniques based on rough and fuzzy sets. For readers who are less familiar with the subject, the book begins with an introduction to fuzzy set theory and fuzzy-rough set theory. Building on this foundation, the book provides: A critical review of FS methods, with particular emphasis on their current limitations Program files implementing major algorithms, together with the necessary instructions and datasets, available on a related Web site Coverage of the background and fundamental ideas behind FS A systematic presentation of the leading methods reviewed in a consistent algorithmic framework Real-world applications with worked examples that illustrate the power and efficacy of the FS approaches covered An investigation of the associated areas of FS, including rule induction and clustering methods using hybridizations of fuzzy and rough set theories Computational Intelligence and Feature Selection is an ideal resource for advanced undergraduates, postgraduates, researchers, and professional engineers. However, its straightforward presentation of the underlying concepts makes the book meaningful to specialists and nonspecialists alike.

Computational Intelligence and Healthcare Informatics

Computational Intelligence and Healthcare Informatics
Author: Om Prakash Jena
Publisher: John Wiley & Sons
Total Pages: 434
Release: 2021-10-19
Genre: Computers
ISBN: 1119818680

COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.

Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering

Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering
Author: Laith Mohammad Qasim Abualigah
Publisher: Springer
Total Pages: 186
Release: 2018-12-18
Genre: Technology & Engineering
ISBN: 3030106748

This book puts forward a new method for solving the text document (TD) clustering problem, which is established in two main stages: (i) A new feature selection method based on a particle swarm optimization algorithm with a novel weighting scheme is proposed, as well as a detailed dimension reduction technique, in order to obtain a new subset of more informative features with low-dimensional space. This new subset is subsequently used to improve the performance of the text clustering (TC) algorithm and reduce its computation time. The k-mean clustering algorithm is used to evaluate the effectiveness of the obtained subsets. (ii) Four krill herd algorithms (KHAs), namely, the (a) basic KHA, (b) modified KHA, (c) hybrid KHA, and (d) multi-objective hybrid KHA, are proposed to solve the TC problem; each algorithm represents an incremental improvement on its predecessor. For the evaluation process, seven benchmark text datasets are used with different characterizations and complexities. Text document (TD) clustering is a new trend in text mining in which the TDs are separated into several coherent clusters, where all documents in the same cluster are similar. The findings presented here confirm that the proposed methods and algorithms delivered the best results in comparison with other, similar methods to be found in the literature.

Advances in Web Intelligence and Data Mining

Advances in Web Intelligence and Data Mining
Author: Mark Last
Publisher: Springer
Total Pages: 350
Release: 2006-08-11
Genre: Computers
ISBN: 3540338802

This book presents state-of-the-art developments in the area of computationally intelligent methods applied to various aspects and ways of Web exploration and Web mining. Some novel data mining algorithms that can lead to more effective and intelligent Web-based systems are also described. Scientists, engineers, and research students can expect to find many inspiring ideas in this volume.

Feature Selection for Data and Pattern Recognition

Feature Selection for Data and Pattern Recognition
Author: Urszula Stańczyk
Publisher: Springer
Total Pages: 0
Release: 2016-09-24
Genre: Technology & Engineering
ISBN: 9783662508459

This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.

Computational Methods of Feature Selection

Computational Methods of Feature Selection
Author: Huan Liu
Publisher: CRC Press
Total Pages: 437
Release: 2007-10-29
Genre: Business & Economics
ISBN: 1584888792

Due to increasing demands for dimensionality reduction, research on feature selection has deeply and widely expanded into many fields, including computational statistics, pattern recognition, machine learning, data mining, and knowledge discovery. Highlighting current research issues, Computational Methods of Feature Selection introduces the

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)
Author: Chi Hau Chen
Publisher: World Scientific
Total Pages: 1045
Release: 1999-03-12
Genre: Computers
ISBN: 9814497649

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Artificial Intelligence and Soft Computing, Part I

Artificial Intelligence and Soft Computing, Part I
Author: Leszek Rutkowski
Publisher: Springer
Total Pages: 695
Release: 2010-06-20
Genre: Computers
ISBN: 3642132081

This volume constitutes the proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, ICAISC'2010, held in Zakopane, Poland in June 13-17, 2010. The articles are organized in topical sections on Fuzzy Systems and Their Applications; Data Mining, Classification and Forecasting; Image and Speech Analysis; Bioinformatics and Medical Applications (Volume 6113) together with Neural Networks and Their Applications; Evolutionary Algorithms and Their Applications; Agent System, Robotics and Control; Various Problems aof Artificial Intelligence (Volume 6114).

Feature Selection for Knowledge Discovery and Data Mining

Feature Selection for Knowledge Discovery and Data Mining
Author: Huan Liu
Publisher: Springer Science & Business Media
Total Pages: 225
Release: 2012-12-06
Genre: Computers
ISBN: 1461556899

As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Handbook of Research on Machine and Deep Learning Applications for Cyber Security

Handbook of Research on Machine and Deep Learning Applications for Cyber Security
Author: Ganapathi, Padmavathi
Publisher: IGI Global
Total Pages: 506
Release: 2019-07-26
Genre: Computers
ISBN: 1522596135

As the advancement of technology continues, cyber security continues to play a significant role in today’s world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.