Computational Engineering Geology

Computational Engineering Geology
Author: Edward Derringh
Publisher:
Total Pages: 348
Release: 1998
Genre: Science
ISBN:

Designed to be a supplemental text for an undergraduate, sophomore/junior-level introductory course in engineering geology. An ideal core text, it is equally suitable for use alongside an introductory text in physical geology for engineers, or as a supplement to an established undergraduate text in engineering geology. Unique in its genre, this highly practical supplementary text to engineering geology centers around solving real-world problems, while covering such standard topics as stress, the stability of rock slopes, groundwater flow, and seismology.

Computational Geosciences with Mathematica

Computational Geosciences with Mathematica
Author: William Haneberg
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2004-07-20
Genre: Computers
ISBN: 9783540402459

Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.

Fundamentals of Computational Geoscience

Fundamentals of Computational Geoscience
Author: Chongbin Zhao
Publisher: Springer Science & Business Media
Total Pages: 248
Release: 2009-04-21
Genre: Science
ISBN: 3540897437

Geoscience is a fundamental natural science discipline dealing with the origin, evolutionary history and behaviour of the planet Earth. As a result of its complicated and complex nature, the Earth system not only provides the necessary materials and environment for mankind to live, but also brings many types of natural disasters, such as earthquakes, volcanic eruptions, tsunamis, ?oods and tornadoes, to mention just a few. With the ever-increasing demand for improving our living standards, it has been recognized that the existing natural resources will be exhausted in the near future and that our living environments are, in fact, deteriorating. To maintain the sustainable development of our living standards and the further improvement of our living environments, an inevitable and challenging task that geoscientists are now confronting is how accurately to predict not only the occurrences of these natural disasters, but also the locations of large concealed natural resources in the deep Earth. For this reason, geoscientists must study the processes, rules and laws, by which the Earth system operates, instead of simply describing and observing g- science phenomena.

Computational Multiphase Geomechanics

Computational Multiphase Geomechanics
Author: Fusao Oka
Publisher: CRC Press
Total Pages: 354
Release: 2021-11-21
Genre: Technology & Engineering
ISBN: 1000474992

Numerical methods are very powerful tools for use in geotechnical engineering, particularly in computational geotechnics. Interest is strong in the new field of multi-phase nature of geomaterials, and the area of computational geotechnics is expanding. Alongside their companion volume Computational Modeling of Multiphase Geomaterials (CRC Press, 2012), Fusao Oka and Sayuri Kimoto cover recent progress in several key areas, such as air-water-soil mixture, cyclic constitutive models, anisotropic models, noncoaxial models, gradient models, compaction bands (a form of volumetric strain localization and strain localization under dynamic conditions), and the instability of unsaturated soils. The text also includes applications of computational modeling to large-scale excavation of ground, liquefaction analysis of levees during earthquakes, methane hydrate development, and the characteristics of contamination using bentonite. The erosion of embankments due to seepage flow is also presented.

Computational Methods for Geodynamics

Computational Methods for Geodynamics
Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
Total Pages: 333
Release: 2010-07-22
Genre: Science
ISBN: 1139489356

Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.

Matrix Discrete Element Analysis of Geological and Geotechnical Engineering

Matrix Discrete Element Analysis of Geological and Geotechnical Engineering
Author: Chun Liu
Publisher: Springer Nature
Total Pages: 306
Release: 2021-01-23
Genre: Science
ISBN: 9813345241

This book introduces the basic structure, modeling methods, numerical calculation processes, post-processing, and system functions of MatDEM, which applies the basic principles and algorithm of the discrete element method. The discrete element method can effectively simulate the discontinuity, inhomogeneity, and large deformation damage of rock and soil. It is widely used in both research and industry. Based on the innovative matrix discrete element computing method, the author developed the high-performance discrete element software MatDEM from scratch, which can handle millions of elements in discrete element numerical simulations. This book also presents several examples of applications in geological and geotechnical engineering, including basic geotechnical engineering problems, discrete element tests, three dimensional landslides, and dynamic and multi-field coupling functions. Teaching videos and the relevant software can be accessed on the MATDEM website (http://matdem.com). The book serves as a useful reference for research and engineering staff, undergraduates, and postgraduates who work in the fields of geology, geotechnical, water conservancy, civil engineering, mining, and physics.

Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering

Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering
Author: Samui, Pijush
Publisher: IGI Global
Total Pages: 641
Release: 2015-11-30
Genre: Technology & Engineering
ISBN: 1466694807

Recent developments in information processing systems have driven the advancement of computational methods in the engineering realm. New models and simulations enable better solutions for problem-solving and overall process improvement. The Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering is an authoritative reference work representing the latest scholarly research on the application of computational models to improve the quality of engineering design. Featuring extensive coverage on a range of topics from various engineering disciplines, including, but not limited to, soft computing methods, comparative studies, and hybrid approaches, this book is a comprehensive reference source for students, professional engineers, and researchers interested in the application of computational methods for engineering design.

Engineering Geology for Underground Rocks

Engineering Geology for Underground Rocks
Author: Suping Peng
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2007-10-14
Genre: Science
ISBN: 3540732950

Professionals and students in any geology-related field will find this an essential reference. It clearly and systematically explains underground engineering geology principles, methods, theories and case studies. The authors lay out engineering problems in underground rock engineering and how to study and solve them. The book specially emphasizes mechanical and hydraulic couplings in rock engineering for wellbore stability, mining near aquifers and other underground structures where inflow is a problem.

Biology, Sociology, Geology by Computational Physicists

Biology, Sociology, Geology by Computational Physicists
Author: Dietrich Stauffer
Publisher: Elsevier
Total Pages: 287
Release: 2006-02-17
Genre: Science
ISBN: 0080462022

The book requires only rudimentary physics knowledge but ability to program computers creatively and to keep the mind open to simple and not so simple models, based in individuals, for the living world around us.* Interdisciplinary coverage* Research oriented* Contains and explains programs* Based on recent discoveries* Little special knowledge required besides programming* Suitable for undergraduate and graduate research projects

Encyclopedia of Engineering Geology

Encyclopedia of Engineering Geology
Author: Peter T. Bobrowsky
Publisher: Springer
Total Pages: 0
Release: 2018-08-03
Genre: Science
ISBN: 9783319735665

This volume addresses the multi-disciplinary topic of engineering geology and the environment, one of the fastest growing, most relevant and applied fields of research and study within the geosciences. It covers the fundamentals of geology and engineering where the two fields overlap and, in addition, highlights specialized topics that address principles, concepts and paradigms of the discipline, including operational terms, materials, tools, techniques and methods as well as processes, procedures and implications. A number of well known and respected international experts contributed to this authoritative volume, thereby ensuring proper geographic representation, professional credibility and reliability. This superb volume provides a dependable and ready source of information on approximately 300 topical entries relevant to all aspects of engineering geology. Extensive illustrations, figures, images, tables and detailed bibliographic citations ensure that the comprehensively defined contributions are broadly and clearly explained. The Encyclopedia of Engineering Geology provides a ready source of reference for several fields of study and practice including civil engineers, geologists, physical geographers, architects, hazards specialists, hydrologists, geotechnicians, geophysicists, geomorphologists, planners, resource explorers, and many others. As a key library reference, this book is an essential technical source for undergraduate and graduate students in their research. Teachers/professors can rely on it as the final authority and the first source of reference on engineering geology related studies as it provides an exceptional resource to train and educate the next generation of practitioners.