Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-impulse Theory

Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-impulse Theory
Author: Godine Kok Yan Chan
Publisher:
Total Pages: 202
Release: 2016
Genre:
ISBN:

Wind energy is one of the more viable sources of renewable energy and offshore wind turbines represent a promising technology for the cost effective harvesting of this abundant source of energy. To capture wind energy offshore, horizontal-axis wind turbines can be installed on offshore platforms and the study of hydrodynamic loads on these offshore platforms becomes a critical issue for the design of offshore wind turbine systems. A versatile and efficient hydrodynamics module was developed to evaluate the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation - the Fluid Impulse Theory(FIT). The new formulation allows linear and nonlinear loads on floating bodies to be computed in the time domain, and avoids the computationally intensive evaluation of temporal and spatial gradients of the velocity potential in the Bernoulli equation and the discretization of the nonlinear free surface. The module computes linear and nonlinear loads - including hydrostatic, Froude-Krylov, radiation and diffraction, as well as nonlinear effects known to cause ringing, springing and slow-drift loads - directly in the time domain and a stochastic seastate. The accurate evaluation of nonlinear loads by FIT provides an excellent alternative to existing methods for the safe and cost-effective design of offshore floating wind turbines. The time-domain Green function is used to solve the linear and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently.

Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory

Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory
Author:
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.

Wave Loads on Offshore Wind Turbines

Wave Loads on Offshore Wind Turbines
Author:
Publisher:
Total Pages: 65
Release: 2015
Genre:
ISBN:

Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear hydrodynamic wave loads and the resulting nonlinear motion and tether tension is of crucial importance in the design of floating wind turbines. A new theoretical framework is presented for analyzing hydrodynamic forces on floating bodies which is potentially applicable in a wide range of problems in ocean engineering. The total fluid force acting on a floating body is obtained by the time rate of change of the impulse of the velocity potential flow around the body. This new model called Fluid Impulse Theory is used to address the nonlinear hydrodynamic wave loads and the resulting nonlinear responses of floating wind turbine for various wave conditions in a highly efficient and robust manner in time domain. A three-dimensional time domain hydrodynamic wave-body interaction computational solver is developed in the frame work of a boundary element method based on the transient free-surface Green-function. By applying a numerical treatment that takes the free-surface boundary conditions linearized at the incident wave surface and takes the body boundary condition satisfied on the instantaneous underwater surface of the moving body, it simulates a potential flow in conjunction with the Fluid Impulse Theory for nonlinear wave-body interaction problems of large amplitude waves and motions in time domain. Several results are presented from the application of the Fluid Impulse Theory to the extreme and fatigue wave load model: the time domain analysis of nonlinear dynamic response of floating wind turbine for extreme wave events and the time domain analysis of nonlinear wave load for an irregular sea state followed by a power spectral density analysis.

A Nonlinear Wave Load Model for Extreme and Fatigue Responses of Offshore Floating Wind Turbines

A Nonlinear Wave Load Model for Extreme and Fatigue Responses of Offshore Floating Wind Turbines
Author: Sungho Lee (Ph. D.)
Publisher:
Total Pages: 173
Release: 2012
Genre:
ISBN:

Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear hydrodynamic wave loads and the resulting nonlinear motion and tether tension is of crucial importance in the design of floating wind turbines. A new theoretical framework is presented for analyzing hydrodynamic forces on floating bodies which is potentially applicable in a wide range of problems in ocean engineering. The total fluid force acting on a floating body is obtained by the time rate of change of the impulse of the velocity potential flow around the body. This new model called Fluid Impulse Theory is used to address the nonlinear hydrodynamic wave loads and the resulting nonlinear responses of floating wind turbine for various wave conditions in a highly efficient and robust manner in time domain. A three-dimensional time domain hydrodynamic wave-body interaction computational solver is developed in the frame work of a boundary element method based on the transient free-surface Green-function. By applying a numerical treatment that takes the free-surface boundary conditions linearized at the incident wave surface and takes the body boundary condition satisfied on the instantaneous underwater surface of the moving body, it simulates a potential flow in conjunction with the Fluid Impulse Theory for nonlinear wave-body interaction problems of large-amplitude waves and motions in time domain. Several results are presented from the application of the Fluid Impulse Theory to the extreme and fatigue wave load model: the time domain analysis of nonlinear dynamic response of floating wind turbine for extreme wave events and the time domain analysis of nonlinear wave load for an irregular sea state followed by a power spectral density analysis.

A comparison of methods for computation of wave forcing

A comparison of methods for computation of wave forcing
Author: Olga Glöckner
Publisher: GRIN Verlag
Total Pages: 137
Release: 2018-05-17
Genre: Technology & Engineering
ISBN: 3668705224

Diploma Thesis from the year 2014 in the subject Engineering - Civil Engineering, grade: 1,0, University of Hannover (A&M University Texas, Ludwig-Franzius-Institut für Wasserbau, Ästuar- und Küsteningenieurwesen), language: English, abstract: Unlike fossil fuels (for example oil, coal and natural gas), wind energy is a renewable energy resource. Since winds at sea are stronger and more consistent than onshore winds, the demand for offshore wind turbines has increased over the last years. As energy can be produced more efficient in deeper water, several floating offshore wind turbine constructions, such as the OC3 Hywind spar-buoy, have been proposed. The design of floating wind turbines depends on the simulation of the system behavior caused by exciting forces. This thesis deals with the comparison between different methods for calculating wave forces and resulting platform motions of a floating offshore wind turbine. On the one hand, wave exciting loads computed with Morison’s equation are compared to the hydrodynamic forces simulated by the open source code FAST on the basis of the diffraction theory. On the other hand, response motions of the floating structure are simulated by the commercial offshore software SESAM in the frequency domain and compared with the motions calculated by FAST in the time domain.

An Integrated Nonlinear Wind-Waves Model for Offshore Wind Turbines

An Integrated Nonlinear Wind-Waves Model for Offshore Wind Turbines
Author: Enzo Marino
Publisher: Firenze University Press
Total Pages: 232
Release: 2010
Genre: Coastal engineering
ISBN: 8866550515

This thesis presents a numerical model capable of simulating offshore wind turbines exposed to extreme loading conditions. External condition-based extreme responses are reproduced by coupling a fully nonlinear wave kinematic solver with a hydro-aero-elastic simulator. First, a two-dimensional fully nonlinear wave simulator is developed. The transient nonlinear free surface problem is formulated assuming the potential theory and a high-order boundary element method is implemented to discretize Laplace's equation. For temporal evolution a second-order Taylor series expansion is used. The code, after validation with experimental data, is successfully adopted to simulate overturning plunging breakers which give rise to dangerous impact loads when they break against wind turbine substructures. Emphasis is then placed on the random nature of the waves. Indeed, through a domain decomposition technique a global simulation framework embedding the numerical wave simulator into a more general stochastic environment is developed. The proposed model is meant as a contribution to meet the more and more pressing demand for research in the offshore wind energy sector as it permits taking into account dangerous effects on the structural response so as to increase the global structural safety level.

Offshore Wind Turbine Nonlinear Wave Loads and Their Statistics

Offshore Wind Turbine Nonlinear Wave Loads and Their Statistics
Author: Yu Zhang (Ph.D.)
Publisher:
Total Pages: 91
Release: 2019
Genre:
ISBN:

Due to the large influence of lateral flexible vibrations on offshore wind turbine foundations and the higher natural frequencies of the offshore wind turbine foundation relative to the dominant frequencies of the linear wave load model, the modeling of the dynamic behavior of the foundation under nonlinear wave loads and analysis of their statistical characteristics have become an important issue for offshore wind turbine design. This thesis derives an approximate model of the nonlinear wave loads in the time domain by Fluid Impulse Theory, verifies it with a boundary element method software WAMIT and validates it with experimental measurements. The load level crossing rates and the load power spectral density is obtained in multiple sea states. The simulated nonlinear wave loads are applied as the forcing mechanism on the offshore wind turbine and its foundation, and the mudline bending moments are computed and compared with experimental measurements. The system identification is conducted by fitting the model with the experimental data using linear regression method. The analytical extreme and fatigue prediction of the offshore wind turbine system are derived and evaluated in waters of finite depth and in multiple seastates. Key words: Nonlinear wave loads, nonlinear wave loads statistics, system identification, extremes and fatigue

MARE-WINT

MARE-WINT
Author: Wiesław Ostachowicz
Publisher: Springer
Total Pages: 432
Release: 2016-08-30
Genre: Technology & Engineering
ISBN: 3319390953

This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.

Wind Energy. Methods for Computation of Wave Forcing and the Resulting Motion of a Slender Offshore Floating Structure

Wind Energy. Methods for Computation of Wave Forcing and the Resulting Motion of a Slender Offshore Floating Structure
Author: Olga Glockner
Publisher:
Total Pages: 152
Release: 2018-06-14
Genre:
ISBN: 9783668754799

Academic Paper from the year 2014 in the subject Engineering - Civil Engineering, grade: 1,0, University of Hannover (A&M University Texas, Ludwig-Franzius-Institut für Wasserbau, Ästuar- und Küsteningenieurwesen), language: English, abstract: This thesis investigates how wave loads act on an OC3 Hywind spar-buoy. The author analyzes the resulting motions of the support platform. This work also contains a detailed presentation of the topic with useful additional information and graphics. Unlike fossil fuels (like oil, coal and natural gas), wind energy is a renewable energy resource. Since winds at sea are stronger and more consistent than onshore winds, the demand for offshore wind turbines has increased over the last years. As energy can be produced more efficient in deeper water, several floating offshore wind turbine constructions, such as the OC3 Hywind spar-buoy, have been proposed. The design of floating wind turbines depends on the simulation of the system behavior caused by exciting forces. A general overview of regular and irregular waves as well as hydrostatic and hydrodynamic loads acting on floating structures is given in chapter 2. Furthermore, essential formulations for calculating motions of FOWTs are given at the end of this chapter. Since all simulations carried out in this thesis are based on the OC3 Hywind concept, detailed information about this floating wind turbine model are given in chapter 3. Three different methods are used for the estimation of wave induced loads and motions. Section 4 describes a modified Morison formulation in the time domain which is applied by the commercially available software MATLAB. On the basis of the diffraction theory the commercial offshore software package SESAM simulates wave excitation forces and responding motions which are presented and discussed in chapter 5. The third method is the open source code FAST that computes wave induced loads and motions based on the first-order potential theory and Kane's e

Hydrodynamics of Semi-submersible Floater for Offshore Wind Turbines in Highly Nonlinear Waves Using Computational Fluid Dynamics (CFD), and Validation of Overset Meshing Technique in a Numerical Wave Tank

Hydrodynamics of Semi-submersible Floater for Offshore Wind Turbines in Highly Nonlinear Waves Using Computational Fluid Dynamics (CFD), and Validation of Overset Meshing Technique in a Numerical Wave Tank
Author: Romain Pinguet
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

The rapid emergence of Floating Offshore Wind Turbines (FOWT) has brought a strong demand for high-fidelity numerical methods to better predict the response of such structures under severe metocean conditions. In these scenarios, design standards suggest simplified approaches, but their applicability is limited, especially when considering complex geometries and/or nonlinear events. Moreover, experimental campaigns are expensive, and few field data are available. So, Computational Fluid Dynamics (CFD) could be a key asset in the design process of FOWT. This thesis aims to assess the ability of a CFD approach to model critical hydrodynamic aspects of semi-submersible FOWT. The overset meshing method built in the open-source software OpenFOAM® is used to handle the body motions. The wave generation and absorption toolbox waves2Foam is coupled with the overset solver to model the interaction between waves and the structure. The results are validated against experimental and numerical data from the literature. Convergence analysis and meshing methodologies of a 2D Numerical Wave Tank (NWT), with fixed and freely floating structures subjected to waves, are considered. Non-linearities are emphasized. The NWT is then extended in 3D to investigate the hydrodynamic response of the DeepCWind semi-submersible FOWT, designed by NREL. Forces and run-up are analyzed for fixed and anchored moving platforms. Wave induced motion and free decay tests are presented. The overset mesh method is also used to estimate the hydrodynamic coefficients resulting from the vertical forced motion of heave damping plate, widely used in FOWT designs.