Composition Operators on Hardy-Orlicz Spaces

Composition Operators on Hardy-Orlicz Spaces
Author: Pascal Lefèvre
Publisher: American Mathematical Soc.
Total Pages: 87
Release: 2010
Genre: Mathematics
ISBN: 082184637X

"The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, ... , and show how these notions behave according to the growth of Psi. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces."--Publisher's description.

Composition Operators on Hardy-Orlicz Spaces

Composition Operators on Hardy-Orlicz Spaces
Author: Pascal Lefèvre
Publisher:
Total Pages: 74
Release: 2010
Genre: MATHEMATICS
ISBN: 9781470405885

"The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, ... , and show how these notions behave according to the growth of Psi. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces."--Publisher's description.

Topics in Complex Analysis and Operator Theory

Topics in Complex Analysis and Operator Theory
Author: Oscar Blasco
Publisher: American Mathematical Soc.
Total Pages: 266
Release: 2012
Genre: Mathematics
ISBN: 0821852752

This book contains the lecture notes as well as some invited papers presented at the Third Winter School in Complex Analysis, Operator Theory and Applications held February 2-5, 2010, in Valencia, Spain. The book is divided into two parts. The first is an extended self-contained version of the mini-courses taught at the School. The papers in this first part are: Notes on real analytic functions and classical operators, by Pawel Domanski; Shining a Hilbertian lamp on the bidisk, by John E. McCarthy; Selected problems in perturbation theory, by Vladimir V. Peller; and Composition operators on Hardy-Orlicz spaces, by Luis Rodriguez-Piazza. The second part consists of several research papers on recent advances in the area and some survey articles of an expository character. The articles in this second part are: Remarks on weighted mixed norm spaces, by O. Blasco; Interpolation subspaces of $L^1$ of a vector measure and norm inequalities for the integration operator, by J.M. Calabuig, J. Rodriguez, and E.A. Sanchez-Perez; On the spectra of algebras of analytic functions, by D. Carando, D. Garcia, M. Maestre, and P. Sevilla-Peris; Holomorphic self-maps of the disk intertwining two linear fractional maps, by M.D. Contreras, S. Diaz-Madrigal, M.J. Martin, and D. Vukotic; ABC-type estimates via Garsia-type norms, by K.M. Dyakonov; and Volterra type operators on Bergman spaces with exponential weights, by J. Pau and J.A. Pelaez. The topics selected for the mini-courses cover several aspects of complex analysis and operator theory that play important roles in understanding connections between different areas that are considered in fashion these days. This part is aimed at graduate students and young researchers. The courses are self-contained, focusing on those aspects that are basic and that can lead the readers to a quick understanding of the theories presented in each topic. They start with the classical results and reach a selection of open problems in each case. The research and survey articles are aimed at young researchers in the area, as well as post-doc and senior researchers interested in complex analysis and operator theory. This book is published in cooperation with Real Sociedad Matematica Espanola.

Operator Algebras, Toeplitz Operators and Related Topics

Operator Algebras, Toeplitz Operators and Related Topics
Author: Wolfram Bauer
Publisher: Springer Nature
Total Pages: 467
Release: 2020-09-01
Genre: Mathematics
ISBN: 3030446514

This book features a collection of up-to-date research papers that study various aspects of general operator algebra theory and concrete classes of operators, including a range of applications. Most of the papers included were presented at the International Workshop on Operator Algebras, Toeplitz Operators, and Related Topics, in Boca del Rio, Veracruz, Mexico, in November 2018. The conference, which was attended by more than 30 leading experts in the field, was held in celebration of Nikolai Vasilevski’s 70th birthday, and the contributions are dedicated to him.

Advanced Courses Of Mathematical Analysis Vi - Proceedings Of The Sixth International School

Advanced Courses Of Mathematical Analysis Vi - Proceedings Of The Sixth International School
Author: Francisco Javier Martin-reyes
Publisher: World Scientific
Total Pages: 248
Release: 2016-10-27
Genre: Mathematics
ISBN: 9813147652

This volume contains short courses and recent papers by several specialists in different fields of Mathematical Analysis. It offers a wide perspective of the current state of research, and new trends, in areas related to Geometric Analysis, Harmonic Analysis, Complex Analysis, Functional Analysis and History of Mathematics. The contributions are presented with a remarkable expository nature and this makes the discussed topics accessible to a more general audience.

Function Classes on the Unit Disc

Function Classes on the Unit Disc
Author: Miroslav Pavlović
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 522
Release: 2019-08-19
Genre: Mathematics
ISBN: 3110628651

This revised and extended edition of a well-established monograph in function theory contains a study on various function classes on the disc, a number of new results and new or easy proofs of old but interesting theorems (for example, the Fefferman-Stein theorem on subharmonic behavior or the theorem on conjugate functions in Bergman spaces) and a full discussion on g-functions.

Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates

Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates
Author: Steve Hofmann
Publisher: American Mathematical Soc.
Total Pages: 91
Release: 2011
Genre: Mathematics
ISBN: 0821852388

Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.

Applications Of Orlicz Spaces

Applications Of Orlicz Spaces
Author: M.M. Rao
Publisher: CRC Press
Total Pages: 496
Release: 2002-02-08
Genre: Mathematics
ISBN: 9780203910863

Presents previously unpublished material on the fundumental pronciples and properties of Orlicz sequence and function spaces. Examines the sample path behavior of stochastic processes. Provides practical applications in statistics and probability.

Complex Interpolation between Hilbert, Banach and Operator Spaces

Complex Interpolation between Hilbert, Banach and Operator Spaces
Author: Gilles Pisier
Publisher: American Mathematical Soc.
Total Pages: 92
Release: 2010-10-07
Genre: Mathematics
ISBN: 0821848429

Motivated by a question of Vincent Lafforgue, the author studies the Banach spaces $X$ satisfying the following property: there is a function $\varepsilon\to \Delta_X(\varepsilon)$ tending to zero with $\varepsilon>0$ such that every operator $T\colon \ L_2\to L_2$ with $\T\\le \varepsilon$ that is simultaneously contractive (i.e., of norm $\le 1$) on $L_1$ and on $L_\infty$ must be of norm $\le \Delta_X(\varepsilon)$ on $L_2(X)$. The author shows that $\Delta_X(\varepsilon) \in O(\varepsilon^\alpha)$ for some $\alpha>0$ iff $X$ is isomorphic to a quotient of a subspace of an ultraproduct of $\theta$-Hilbertian spaces for some $\theta>0$ (see Corollary 6.7), where $\theta$-Hilbertian is meant in a slightly more general sense than in the author's earlier paper (1979).