Complex Analysis With Vector Calculus
Download Complex Analysis With Vector Calculus full books in PDF, epub, and Kindle. Read online free Complex Analysis With Vector Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : T. M. J. A. Cooray |
Publisher | : Alpha Science Int'l Ltd. |
Total Pages | : 378 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9781842653609 |
Based on many years of experience of the author Complex Analysis with Vector Calculus provides clear and condensed treatment of the subject. It is primarily intended to be used by undergraduate students of engineering and science as a part of a course in engineering mathematics, where they are introduced to complex variable theory, through conceptual development of analysis. The book also introduces vector algebra, step by step, with due emphasis on various operations on vector field and scalar fields. Especially, it introduces proof of vector identities by use of a new approach and includes many examples to clarify the ideas and familiarize students with various techniques of problem solving.
Author | : David C. Ullrich |
Publisher | : American Mathematical Soc. |
Total Pages | : 506 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0821844792 |
Presents the Dirichlet problem for harmonic functions twice: once using the Poisson integral for the unit disk and again in an informal section on Brownian motion, where the reader can understand intuitively how the Dirichlet problem works for general domains. This book is suitable for a first-year course in complex analysis
Author | : John W. Dettman |
Publisher | : Courier Corporation |
Total Pages | : 514 |
Release | : 2012-05-07 |
Genre | : Mathematics |
ISBN | : 0486158284 |
Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.
Author | : Paul C. Matthews |
Publisher | : Springer Science & Business Media |
Total Pages | : 189 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1447105974 |
Vector calculus is the fundamental language of mathematical physics. It pro vides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These top ics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. The book is designed to be self-contained, so that it is suitable for a pro gramme of individual study. Each of the eight chapters introduces a new topic, and to facilitate understanding of the material, frequent reference is made to physical applications. The physical nature of the subject is clarified with over sixty diagrams, which provide an important aid to the comprehension of the new concepts. Following the introduction of each new topic, worked examples are provided. It is essential that these are studied carefully, so that a full un derstanding is developed before moving ahead. Like much of mathematics, each section of the book is built on the foundations laid in the earlier sections and chapters.
Author | : Elias M. Stein |
Publisher | : Princeton University Press |
Total Pages | : 398 |
Release | : 2010-04-22 |
Genre | : Mathematics |
ISBN | : 1400831156 |
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Author | : Tristan Needham |
Publisher | : Oxford University Press |
Total Pages | : 620 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 9780198534464 |
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Author | : Richard A. Silverman |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2013-04-15 |
Genre | : Mathematics |
ISBN | : 0486318524 |
Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.
Author | : John Hamal Hubbard |
Publisher | : |
Total Pages | : 284 |
Release | : 2009 |
Genre | : Algebras, Linear |
ISBN | : 9780971576674 |
Author | : Lynn Harold Loomis |
Publisher | : World Scientific Publishing Company |
Total Pages | : 595 |
Release | : 2014-02-26 |
Genre | : Mathematics |
ISBN | : 9814583952 |
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Author | : Jiri Lebl |
Publisher | : Lulu.com |
Total Pages | : 142 |
Release | : 2016-05-05 |
Genre | : Science |
ISBN | : 1365095576 |
This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.