Complex Algebraic Threefolds
Download Complex Algebraic Threefolds full books in PDF, epub, and Kindle. Read online free Complex Algebraic Threefolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Masayuki Kawakita |
Publisher | : Cambridge University Press |
Total Pages | : 504 |
Release | : 2023-10-19 |
Genre | : Mathematics |
ISBN | : 1108946038 |
The first book on the explicit birational geometry of complex algebraic threefolds, this detailed text covers all the knowledge of threefolds needed to enter the field of higher dimensional birational geometry. Containing over 100 examples and many recent results, it is suitable for advanced graduate students as well as researchers.
Author | : Arnaud Beauville |
Publisher | : Cambridge University Press |
Total Pages | : 148 |
Release | : 1996-06-28 |
Genre | : Mathematics |
ISBN | : 9780521498425 |
Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.
Author | : Claire Voisin |
Publisher | : Cambridge University Press |
Total Pages | : 334 |
Release | : 2007-12-20 |
Genre | : Mathematics |
ISBN | : 9780521718011 |
This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
Author | : Alberto Conte |
Publisher | : Springer |
Total Pages | : 322 |
Release | : 2006-11-17 |
Genre | : Mathematics |
ISBN | : 3540393420 |
Author | : Charles Herbert Clemens |
Publisher | : Cambridge University Press |
Total Pages | : 180 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 9780521562447 |
The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.
Author | : Amnon Neeman |
Publisher | : Cambridge University Press |
Total Pages | : 433 |
Release | : 2007-09-13 |
Genre | : Mathematics |
ISBN | : 0521709830 |
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
Author | : Kunihiko Kodaira |
Publisher | : CUP Archive |
Total Pages | : 424 |
Release | : 1977 |
Genre | : Mathematics |
ISBN | : 9780521217774 |
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Author | : Jean Chaumine |
Publisher | : World Scientific |
Total Pages | : 530 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 9812793429 |
This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.
Author | : G. Ellingsrud |
Publisher | : Cambridge University Press |
Total Pages | : 354 |
Release | : 1992-07-30 |
Genre | : Mathematics |
ISBN | : 0521433525 |
A volume of papers describing new methods in algebraic geometry.
Author | : Hiroaki Hijikata |
Publisher | : Academic Press |
Total Pages | : 417 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483265188 |
Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.