Complete Chloroplast Genome of Trachelium Caeruleum

Complete Chloroplast Genome of Trachelium Caeruleum
Author:
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes. Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome, relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats, which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies identified a number of taxa inwhich several rearrangements have occurred (reviewed in Raubeson andJansen, 2005), an extraordinary number of chloroplast genome alterationsare concentrated in several families in the angiosperm order Asterales(sensu APGII, Bremer et al., 2003). Gene mapping studies ofrepresentatives of the Campanulaceae (Cosner, 1993; Cosner et al.,1997,2004) and Lobeliaceae (Knox et al., 1993; Knox and Palmer, 1999)identified large inversions, contraction and expansion of the invertedrepeat regions, and several insertions and deletions in the cpDNAs ofthese closely related taxa. Detailed restriction site and gene mapping ofthe chloroplast genome of Trachelium caeruleum (Campanulaceae) identifiedseven to ten large inversions, families of repeats associated withrearrangements, possible transpositions, and even the disruption ofoperons (Cosner et al., 1997). Seventeen other members of theCampanulaceae were mapped and exhibit many additional rearrangements(Cosner et al., 2004). What happened in this lineage that made itsusceptible to so many chloroplast genome rearrangements? How do normallyvery conserved chloroplast genomes change? The cause of rearrangements inthis group is unclear based on the limited resolution available withmapping techniques. Several mechanisms have been proposed to explain howrearrangements occur: recombination between repeats, transposition, ortemporary instability due to loss of the inverted repeat (Raubeson andJansen, 2005). Sequencing whole chloroplast genomes within theCampanulaceae offers a unique opportunity to examine both the extent andmechanisms of rearrangements within a phylogenetic framework. We reporthere the first complete chloroplast genome sequence of a member of theCampanulaceae, Trachelium caeruleum. This work will serve as a benchmarkfor subsequent, comparative sequencing and analysis of other members ofthis family and close relatives, with the goal of further understandingchloroplast genome evolution. We confirmed features previously identifiedthrough mapping, and discovered many additional structural changes, including several partial to entire gene duplications, deterioration ofat least four normally conserved chloroplast genes into gene fragments, and the nature and position of numerous repeat elements at or nearinversion endpoints. The focus of this paper is on analyses of sequencesat or near these rearrangements in Trachelium caeruleum. Inversions arebelieved to occur due to the presence of repeat elements subject tohomologous recombination (Palmer, 1991; Knox et al., 1993). Repeats mayfacilitate inversions or other genome rearrangements (Achaz et al.,2003), and higher incidences of repeats have been correlated with greaternumbers of rearrangements (Rocha, 2003). Alternatively, repeats mayproliferate within a genome asa result of DNA strand repair mechanismsfollowing a rearrangement event such as an inversion. Gene.

Genomics of Chloroplasts and Mitochondria

Genomics of Chloroplasts and Mitochondria
Author: Ralph Bock
Publisher: Springer Science & Business Media
Total Pages: 502
Release: 2012-06-05
Genre: Science
ISBN: 9400729200

The past decade has witnessed an explosion of our knowledge on the structure, coding capacity and evolution of the genomes of the two DNA-containing cell organelles in plants: chloroplasts (plastids) and mitochondria. Comparative genomics analyses have provided new insights into the origin of organelles by endosymbioses and uncovered an enormous evolutionary dynamics of organellar genomes. In addition, they have greatly helped to clarify phylogenetic relationships, especially in algae and early land plants with limited morphological and anatomical diversity. This book, written by leading experts, summarizes our current knowledge about plastid and mitochondrial genomes in all major groups of algae and land plants. It also includes chapters on endosymbioses, plastid and mitochondrial mutants, gene expression profiling and methods for organelle transformation. The book is designed for students and researchers in plant molecular biology, taxonomy, biotechnology and evolutionary biology.

Chloroplast

Chloroplast
Author: Bartolome Sabater
Publisher: MDPI
Total Pages: 475
Release: 2018-11-15
Genre: Science
ISBN: 303897336X

This book is a printed edition of the Special Issue "Chloroplast" that was published in IJMS

Flowering Plants · Dicotyledons

Flowering Plants · Dicotyledons
Author: Joachim W. Kadereit
Publisher: Springer Science & Business Media
Total Pages: 487
Release: 2012-12-06
Genre: Science
ISBN: 3642186173

In this volume, 24 flowering plant families comprising a total of 911 genera are treated. They represent the asterid order Lamiales except for Acanthaceae (including Avicenniaceae), which will be included in a later volume. Although most of the constituent families of the order have been recognized as being closely related long ago, the inclusion of the families Byblidaceae, Carlemanniaceae and Plocospermataceae is the result mainly of recent molecular systematic research. Keys for the identification of all genera are provided, and likely phylogenetic relationships are discussed extensively. To facilitate the recognition of relationships, families are cross-referenced where necessary. The wealth of information contained in this volume makes it an indispensable source for anybody in the fields of pure and applied plant sciences.

Orchid Genomics and Developmental Biology

Orchid Genomics and Developmental Biology
Author: Jen-Tsung Chen
Publisher: Frontiers Media SA
Total Pages: 179
Release: 2020-09-02
Genre: Nature
ISBN: 2889639754

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

The Kiwifruit Genome

The Kiwifruit Genome
Author: Raffaele Testolin
Publisher: Springer
Total Pages: 275
Release: 2016-05-02
Genre: Science
ISBN: 3319322745

This book describes the basic botanical features of kiwifruit and its wild relatives, reports on the steps that led to its genome sequencing, and discusses the results obtained with the assembly and annotation. The core chapters provide essential insights into the main gene families that characterize this species as a crop, including the genes controlling sugar and starch metabolism, pigment biosynthesis and degradation, the ascorbic-acid pathway, fruit softening and postharvest metabolism, allergens, and resistance to pests and diseases. The book offers a valuable reference guide for taxonomists, geneticists and horticulturists. Further, since information gained from the genome sequence is extraordinarily useful in assessing the breeding value of individuals based on whole-genome scans, it will especially benefit plant breeders. Accordingly, chapters are included that focus on gene introgression from wild relatives and genome-based breeding.

Plant Genome Diversity Volume 1

Plant Genome Diversity Volume 1
Author: Jonathan Wendel
Publisher: Springer Science & Business Media
Total Pages: 282
Release: 2012-03-23
Genre: Science
ISBN: 3709111307

In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic “residents” of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.

Plastid Genome Evolution

Plastid Genome Evolution
Author:
Publisher: Academic Press
Total Pages: 398
Release: 2018-02-03
Genre: Science
ISBN: 0128134585

Plastid Genome Evolution, Volume 85 provides a summary of recent research on plastid genome variation and evolution across photosynthetic organisms. It covers topics ranging from the causes and consequences of genomic changes, to the phylogenetic utility of plastomes for resolving relationships across the photosynthetic tree of life. This newly released volume presents thorough, up-to-date information on coevolution between the plastid and nuclear genomes, with chapters on plastid autonomy vs. nuclear control over plastid function, establishment and genetic integration of plastids, plastid genomes in alveolate protists, plastid genomes of glaucophytes, the evolution of the plastid genome in chlorophyte and streptophyte green algae, and more. Provides comprehensive coverage of plastid genome variation by leading researchers in the field Presents a broad range of taxonomic groups, ranging from single and multicellular algae, to the major clades of land plants Includes thorough, up-to-date information on coevolution between the plastid and nuclear genomes