Finite-Dimensional Variational Inequalities and Complementarity Problems

Finite-Dimensional Variational Inequalities and Complementarity Problems
Author: Francisco Facchinei
Publisher: Springer Science & Business Media
Total Pages: 724
Release: 2007-06-14
Genre: Mathematics
ISBN: 0387218149

This is part one of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It covers the basic theory of finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.

The Linear Complementarity Problem

The Linear Complementarity Problem
Author: Richard W. Cottle
Publisher: SIAM
Total Pages: 781
Release: 2009-08-27
Genre: Mathematics
ISBN: 0898716861

A revised edition of the standard reference on the linear complementarity problem.

Complementarity Modeling in Energy Markets

Complementarity Modeling in Energy Markets
Author: Steven A. Gabriel
Publisher: Springer Science & Business Media
Total Pages: 637
Release: 2012-07-20
Genre: Business & Economics
ISBN: 1441961232

This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren’t specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.

Complementarity Problems

Complementarity Problems
Author: George Isac
Publisher: Springer
Total Pages: 305
Release: 2006-11-15
Genre: Science
ISBN: 3540474919

The study of complementarity problems is now an interesting mathematical subject with many applications in optimization, game theory, stochastic optimal control, engineering, economics etc. This subject has deep relations with important domains of fundamental mathematics such as fixed point theory, ordered spaces, nonlinear analysis, topological degree, the study of variational inequalities and also with mathematical modeling and numerical analysis. Researchers and graduate students interested in mathematical modeling or nonlinear analysis will find here interesting and fascinating results.

Complementarity and Variational Problems

Complementarity and Variational Problems
Author: Michael C. Ferris
Publisher: SIAM
Total Pages: 494
Release: 1997-01-01
Genre: Mathematics
ISBN: 9780898713916

After more than three decades of research, the subject of complementarity problems and its numerous extensions has become a well-established and fruitful discipline within mathematical programming and applied mathematics. Sources of these problems are diverse and span numerous areas in engineering, economics, and the sciences. Includes refereed articles.

Complementarity: Applications, Algorithms and Extensions

Complementarity: Applications, Algorithms and Extensions
Author: Michael C. Ferris
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2013-03-09
Genre: Computers
ISBN: 1475732791

This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization ideas to related problems in the burgeoning fields of machine learning and data mining are also covered in a series of three articles. In order to effectively process the complementarity problems that arise in such applications, various algorithmic, theoretical and computational extensions are covered in this volume. Nonsmooth analysis has an im portant role to play in this area as can be seen from articles using these tools to develop Newton and path following methods for constrained nonlinear systems and complementarity problems. Convergence issues are covered in the context of active set methods, global algorithms for pseudomonotone variational inequalities, successive convex relaxation and proximal point algorithms. Theoretical contributions to the connectedness of solution sets and constraint qualifications in the growing area of mathematical programs with equilibrium constraints are also presented. A relaxation approach is given for solving such problems. Finally, computational issues related to preprocessing mixed complementarity problems are addressed.

Interior Point Algorithms

Interior Point Algorithms
Author: Yinyu Ye
Publisher: John Wiley & Sons
Total Pages: 440
Release: 2011-10-11
Genre: Mathematics
ISBN: 1118030958

The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.

Numerical Methods for Linear Complementarity Problems in Physics-Based Animation

Numerical Methods for Linear Complementarity Problems in Physics-Based Animation
Author: Sarah Niebe
Publisher: Springer Nature
Total Pages: 151
Release: 2022-05-31
Genre: Mathematics
ISBN: 3031795644

Linear complementarity problems (LCPs) have for many years been used in physics-based animation to model contact forces between rigid bodies in contact. More recently, LCPs have found their way into the realm of fluid dynamics. Here, LCPs are used to model boundary conditions with fluid-wall contacts. LCPs have also started to appear in deformable models and granular simulations. There is an increasing need for numerical methods to solve the resulting LCPs with all these new applications. This book provides a numerical foundation for such methods, especially suited for use in computer graphics. This book is mainly intended for a researcher/Ph.D. student/post-doc/professor who wants to study the algorithms and do more work/research in this area. Programmers might have to invest some time brushing up on math skills, for this we refer to Appendices A and B. The reader should be familiar with linear algebra and differential calculus. We provide pseudo code for all the numerical methods, which should be comprehensible by any computer scientist with rudimentary programming skills. The reader can find an online supplementary code repository, containing Matlab implementations of many of the core methods covered in these notes, as well as a few Python implementations [Erleben, 2011]. Table of Contents: Introduction / Numerical Methods / Guide for Software and Selecting Methods / Bibliography / Authors' Biographies

A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems

A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems
Author: Masakazu Kojima
Publisher: Springer
Total Pages: 124
Release: 1991
Genre: Computers
ISBN:

"Following Karmarkar's 1984 linear programming algorithm, numerous interior-point algorithms have been proposed for various mathematical programming problems such as linear programming, convex quadratic programming and convex programming in general. This monograph presents a study of interior-point algorithms for the linear complementarity problem (LCP) which is known as a mathematical model for primal-dual pairs of linear programs and convex quadratic programs. A large family of potential reduction algorithms is presented in a unified way for the class of LCPs where the underlying matrix has nonnegative principal minors (P0-matrix). This class includes various important subclasses such as positive semi-definite matrices, P-matrices, P*-matrices introduced in this monograph, and column sufficient matrices. The family contains not only the usual potential reduction algorithms but also path following algorithms and a damped Newton method for the LCP. The main topics are global convergence, global linear convergence, and the polynomial-time convergence of potential reduction algorithms included in the family."--PUBLISHER'S WEBSITE.