Comparisons of Small Edge Localized Mode H-Mode Regimes on the Alcator C-Mod and JFT-2M Tokamaks

Comparisons of Small Edge Localized Mode H-Mode Regimes on the Alcator C-Mod and JFT-2M Tokamaks
Author: Amanda E. Hubbard
Publisher:
Total Pages: 16
Release: 2005
Genre:
ISBN:

Comparisons of H-mode regimes were carried out on the Alcator C-Mod and JFT-2M tokamaks. Shapes were matched apart from aspect ratio, which is lower on C-Mod. The High Recycling Steady (HRS) H-mode on JFT-2M and Enhanced D-alpha (EDA) regime on C-Mod, which both feature very small or no ELMs, are found to have similar access conditions in q95-nu* space, occurring for pedestal collisionality nu* greater than 1. Differences in edge fluctuations were found, with lower frequencies but higher mode numbers on C-Mod. In both tokamaks an attractive regime with small ELMs on top of an enhanced D-alpha baseline was obtained at moderate nu* and higher pressure. The JFT-2M shape favoured the appearance of ELMs on C-Mod, and also resulted in the appearance of a lower frequency component of the quasicoherent mode during EDA.

Enhanced D-Alpha H-mode Studies in the Alcator C-Mod Tokamak

Enhanced D-Alpha H-mode Studies in the Alcator C-Mod Tokamak
Author: Earl S. Marmar
Publisher:
Total Pages: 6
Release: 2000
Genre:
ISBN:

A favorable regime of H-mode confinement, seen on the Alcator C-Mod tokamak is described. Following a brief period of ELM-free H-mode, the plasma evolves into the Enhanced D-Alpha (EDA) H-mode which is characterized by very good energy confinement, the complete absence of large, intermittent type I ELMs, finite impurity and majority species confinement, and low radiated power fraction. Accompanying the EDA H-mode, a quasi-coherent (QC) edge mode is observed, and found to be responsible for particle transport through the edge confinement barrier. The QC-mode is localized within the strong density gradient region, and has poloidal wavenumber and lab-frame frequency of 100 kHz. Parametric studies show that the conditions which promote EDA include moderate safety factor, high triangularity (d>0.35) and high target density (ne>1.2x20 m-3). EDA H-mode is readily obtained in purely ohmic and well as in ICRF auxiliary-heated discharges.

Edge Transport Barrier Studies on the Alcator C-Mod Tokamak

Edge Transport Barrier Studies on the Alcator C-Mod Tokamak
Author: Jerry Wayne Hughes
Publisher:
Total Pages: 452
Release: 2005
Genre:
ISBN:

Edge transport barriers (ETBs) in tokamak plasmas accompany transitions from low confinement (L-mode) to high confinement (H-mode) and exhibit large density and temperature gradients in a narrow pedestal region near the last closed flux surface (LCFS). Because tokamak energy confinement depends strongly on the boundary condition imposed by the edge plasma pressure, one desires a predictive capability for the pedestal on a future tokamak. On Alcator C-Mod, significant contributions to ETB studies were made possible with edge Thomson scattering (ETS), which measures profiles of electron temperature (20 [leq] Te[eV] [leq] 800) and density (0.3 [leq] ne[10^20m^-3] [leq] 5) with 1.3-mm spatial resolution near the LCFS. Profiles of Te, ne, and pe = neTe are fitted with a parameterized function, revealing typical pedestal widths [delta] of 2-6mm, with [delta]Te [geq] [delta]ne , on average. Pedestals are examined to determine existence criteria for the enhanced D[alpha] (EDA) H-mode. A feature that distinguishes this regime is a quasi-coherent mode (QCM) near the LCFS. The presence or absence of the QCM is related to edge conditions, in particular density, temperature and safety factor q. Results are consistent with higher values of both q and collisionality [nu]* giving the EDA regime. Further evidence suggests that increased abs([nabla]pe) may favor the QCM; thus EDA may have relevance to low-[nu]* reactor regimes, should sufficient edge pressure gradient exist.

H-mode Pedestal and L-H Transition Studies on Alcator C-Mod

H-mode Pedestal and L-H Transition Studies on Alcator C-Mod
Author: Jerry Wayne Hughes
Publisher:
Total Pages: 104
Release: 2005
Genre:
ISBN:

H-mode research on Alcator C-Mod is described, with a focus on the edge transport barrier (ETB). ETB pedestals are characterized using several diagnostics, leading to a thorough description of profile structure in H-mode. L-H transition criteria are discussed, along with the fast evolution of the pedestal following the L-H transition. H-mode regimes are described in terms of their edge transport characteristics and the local edge parameters favoring each. Empirical scalings of the pedestal with operational parameters are found, helping to illuminate physics governing the pedestal structure, and the relationship between edge transport and global confinement is discussed. Dimensionless comparisons between discharges on different tokamaks are discussed. Finally, ongoing work and directions for the future are described.

Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas

Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas
Author: Valentin Igochine
Publisher: Springer
Total Pages: 350
Release: 2014-09-15
Genre: Science
ISBN: 3662442221

During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

Study of High Performance Mode Access Conditions on the Alcator C-Mod Tokamak

Study of High Performance Mode Access Conditions on the Alcator C-Mod Tokamak
Author: Yunxing Ma
Publisher:
Total Pages: 210
Release: 2013
Genre:
ISBN:

Usually when sufficient heating power is injected, tokamak plasma will make an abrupt transition into a state with improved confinement, known as the high-confinement mode, or H-mode. Given the greatly enhanced fusion yield, H-mode is foreseen as the baseline scenario for the future plasma operation of the International Thermonuclear Experimental Reactor (ITER). Many research efforts have been given to understand the criteria for H-mode access. To further contribute to this research, a primary focus of this thesis is characterizing the H-mode access conditions in the Alcator C-Mod tokamak, across a broad range of plasma density, magnetic field, and plasma current. In addition, dedicated experiments were designed and executed on C-Mod, to explore the effects of divertor geometry, ICRF resonance location, and main ion species on H-mode access conditions. Results from these experiments will be included in this thesis. The underlying physics of H-mode access is very complex, and the critical mechanisms remain largely unresolved. To promote our understanding, some models proposed for the H-mode transition are tested, using well documented local plasma conditions, obtained in C-Mod experiments. In particular, this thesis pioneers the test of a recently developed model for H-mode threshold power predictions.