Compact Modeling Of Total Ionizing Dose And Aging Effects In Mos Technologies
Download Compact Modeling Of Total Ionizing Dose And Aging Effects In Mos Technologies full books in PDF, epub, and Kindle. Read online free Compact Modeling Of Total Ionizing Dose And Aging Effects In Mos Technologies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Visakh P. M. |
Publisher | : John Wiley & Sons |
Total Pages | : 389 |
Release | : 2022-10-07 |
Genre | : Technology & Engineering |
ISBN | : 3527824235 |
Nanotechnology in Electronics Enables readers to understand and apply state-of-the-art concepts surrounding modern nanotechnology in electronics Nanotechnology in Electronics summarizes numerous research accomplishments in the field, covering novel materials for electronic applications (such as graphene, nanowires, and carbon nanotubes) and modern nanoelectronic devices (such as biosensors, optoelectronic devices, flexible electronics, nanoscale batteries, and nanogenerators) that are used in many different fields (such as sensor technology, energy generation, data storage and biomedicine). Edited by four highly qualified researchers and professionals in the field, other specific sample topics covered in Nanotechnology in Electronics include: Graphene-based nanoelectronics biosensors, including the history, properties, and fundamentals of graphene, plus fundamentals of graphene derivatives and the synthesis of graphene Zinc oxide piezoelectronic nanogenerators for low frequency applications, with an introduction to zinc oxide and zinc oxide piezoelectric nanogenerators Investigation of the hot junctionless mosfets, including an overview of the junctionless paradigm and a simulation framework of the hot carrier degradation Conductive nanomaterials for printed/flexible electronics application and metal oxide semiconductors for non-invasive diagnosis of breast cancer The fundamental aspects and applications of multiferroic-based spintronic devices and quartz tuning fork based nanosensors. Containing in-depth information on the topic and written intentionally to help with the practical application of concepts described within, Nanotechnology in Electronics is a must-have reference for materials scientists, electronics engineers, and engineering scientists who wish to understand and harness the state of the art in the field.
Author | : Gennady Gildenblat |
Publisher | : Springer Science & Business Media |
Total Pages | : 531 |
Release | : 2010-06-22 |
Genre | : Technology & Engineering |
ISBN | : 9048186145 |
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
Author | : Paul Leroux |
Publisher | : MDPI |
Total Pages | : 210 |
Release | : 2019-08-26 |
Genre | : Technology & Engineering |
ISBN | : 3039212796 |
Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.
Author | : Institute of Electrical and Electronics Engineers |
Publisher | : |
Total Pages | : 1468 |
Release | : 1997 |
Genre | : Electrical engineering |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 810 |
Release | : 2009 |
Genre | : Dissertations, Academic |
ISBN | : |
Author | : Tibor Grasser |
Publisher | : Springer Science & Business Media |
Total Pages | : 805 |
Release | : 2013-10-22 |
Genre | : Technology & Engineering |
ISBN | : 1461479096 |
This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability. Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.
Author | : Boualem Djezzar |
Publisher | : BoD – Books on Demand |
Total Pages | : 188 |
Release | : 2018-03-28 |
Genre | : Science |
ISBN | : 9535139533 |
The benefits of ionizing radiations have been largely demonstrated through many achievements of human life. Understanding the fundamental elementary interactions of ionizing radiations with material has allowed the development of various applications needed by different industries. This book draws some facets of their applications, such as hardening process for semiconductor devices, biomedical imaging by radiation luminescent quantum dots, hydrogen gas detection by Raman lidar sensor for explosion risk assessment, water and wastewater purification by radiation treatment for environment, doping by the neutron transmutation doping for the semiconductor industry, and polymerization by irradiation, which is useful for industries requiring resistant and protective coating. I wish the chapters of this book can provide some helpful information on ionizing radiation applications.
Author | : |
Publisher | : |
Total Pages | : 1346 |
Release | : 1985 |
Genre | : Aeronautics |
ISBN | : |
Author | : Christian C. Enz |
Publisher | : John Wiley & Sons |
Total Pages | : 328 |
Release | : 2006-08-14 |
Genre | : Technology & Engineering |
ISBN | : 0470855452 |
Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.
Author | : T. P. Ma |
Publisher | : John Wiley & Sons |
Total Pages | : 616 |
Release | : 1989-04-18 |
Genre | : Technology & Engineering |
ISBN | : 9780471848936 |
The first comprehensive overview describing the effects of ionizing radiation on MOS devices, as well as how to design, fabricate, and test integrated circuits intended for use in a radiation environment. Also addresses process-induced radiation effects in the fabrication of high-density circuits. Reviews the history of radiation-hard technology, providing background information for those new to the field. Includes a comprehensive review of the literature and an annotated listing of research activities in radiation-hardness research.