Common Errors In Statistics And How To Avoid Them Second Edition Introduction To Statistics Through Resampling Methods And R S Plus Set
Download Common Errors In Statistics And How To Avoid Them Second Edition Introduction To Statistics Through Resampling Methods And R S Plus Set full books in PDF, epub, and Kindle. Read online free Common Errors In Statistics And How To Avoid Them Second Edition Introduction To Statistics Through Resampling Methods And R S Plus Set ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Phillip I. Good |
Publisher | : John Wiley & Sons |
Total Pages | : 244 |
Release | : 2012-01-20 |
Genre | : Mathematics |
ISBN | : 0471722499 |
Stimulate learning through discovery With its emphasis on the discovery method, this book allows readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers will quickly master and learn to apply statistical methods, such as bootstrap, decision trees, and permutations, to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: Tests and estimation procedures for one, two, and multiple samples Model building Multivariate analysis Complex experimental design Throughout the text, the R programming language is used to illustrate new concepts and assist readers in completing exercises. Readers may download the freely available R programming language from the Internet or take advantage of the menu-driven S-PLUS® program. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: More than two hundred exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills Companion FTP site provides access to all data sets and programs discussed in the text Dozens of thought-provoking questions in the final chapter, Problem Solving, assist readers in applying statistics to address real-life problems Instructor's manual provides answers to exercises Helpful appendices include an introduction to S-PLUS® features This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited for both students and practitioners.
Author | : Phillip I. Good |
Publisher | : Springer Science & Business Media |
Total Pages | : 229 |
Release | : 2006-12-31 |
Genre | : Mathematics |
ISBN | : 081764444X |
This thoroughly revised and expanded third edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. Only requiring minimal mathematics beyond algebra, it provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. New to the third edition are additional program listings and screen shots of C++, CART, Blossom, Box Sampler (an Excel add-in), EViews, MATLAB, R, Resampling Stats, SAS macros, S-Plus, Stata, or StatXact, which accompany each resampling procedure. A glossary and solutions to selected exercises have also been added. With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, simplicity, and versatility of resampling methods. It is an essential resource for statisticians, biostatisticians, statistical consultants, students, and research professionals in the biological, physical, and social sciences, engineering, and technology.
Author | : Phillip I. Good |
Publisher | : Wiley |
Total Pages | : 304 |
Release | : 2009-10-06 |
Genre | : Mathematics |
ISBN | : 0470473916 |
Praise for the Second Edition "All statistics students and teachers will find in this book a friendly and intelligentguide to . . . applied statistics in practice." —Journal of Applied Statistics ". . . a very engaging and valuable book for all who use statistics in any setting." —CHOICE ". . . a concise guide to the basics of statistics, replete with examples . . . a valuablereference for more advanced statisticians as well." —MAA Reviews Now in its Third Edition, the highly readable Common Errors in Statistics (and How to Avoid Them) continues to serve as a thorough and straightforward discussion of basic statistical methods, presentations, approaches, and modeling techniques. Further enriched with new examples and counterexamples from the latest research as well as added coverage of relevant topics, this new edition of the benchmark book addresses popular mistakes often made in data collection and provides an indispensable guide to accurate statistical analysis and reporting. The authors' emphasis on careful practice, combined with a focus on the development of solutions, reveals the true value of statistics when applied correctly in any area of research. The Third Edition has been considerably expanded and revised to include: A new chapter on data quality assessment A new chapter on correlated data An expanded chapter on data analysis covering categorical and ordinal data, continuous measurements, and time-to-event data, including sections on factorial and crossover designs Revamped exercises with a stronger emphasis on solutions An extended chapter on report preparation New sections on factor analysis as well as Poisson and negative binomial regression Providing valuable, up-to-date information in the same user-friendly format as its predecessor, Common Errors in Statistics (and How to Avoid Them), Third Edition is an excellent book for students and professionals in industry, government, medicine, and the social sciences.
Author | : Phillip I. Good |
Publisher | : John Wiley & Sons |
Total Pages | : 224 |
Release | : 2013-02-11 |
Genre | : Mathematics |
ISBN | : 1118428218 |
A highly accessible alternative approach to basic statistics Praise for the First Edition: "Certainly one of the most impressive little paperback 200-page introductory statistics books that I will ever see . . . it would make a good nightstand book for every statistician."—Technometrics Written in a highly accessible style, Introduction to Statistics through Resampling Methods and R, Second Edition guides students in the understanding of descriptive statistics, estimation, hypothesis testing, and model building. The book emphasizes the discovery method, enabling readers to ascertain solutions on their own rather than simply copy answers or apply a formula by rote. The Second Edition utilizes the R programming language to simplify tedious computations, illustrate new concepts, and assist readers in completing exercises. The text facilitates quick learning through the use of: More than 250 exercises—with selected "hints"—scattered throughout to stimulate readers' thinking and to actively engage them in applying their newfound skills An increased focus on why a method is introduced Multiple explanations of basic concepts Real-life applications in a variety of disciplines Dozens of thought-provoking, problem-solving questions in the final chapter to assist readers in applying statistics to real-life applications Introduction to Statistics through Resampling Methods and R, Second Edition is an excellent resource for students and practitioners in the fields of agriculture, astrophysics, bacteriology, biology, botany, business, climatology, clinical trials, economics, education, epidemiology, genetics, geology, growth processes, hospital administration, law, manufacturing, marketing, medicine, mycology, physics, political science, psychology, social welfare, sports, and toxicology who want to master and learn to apply statistical methods.
Author | : Phillip I. Good |
Publisher | : John Wiley & Sons |
Total Pages | : 245 |
Release | : 2005-07-22 |
Genre | : Mathematics |
ISBN | : 0471741760 |
Learn statistical methods quickly and easily with the discovery method With its emphasis on the discovery method, this publication encourages readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers quickly master and learn to apply statistical methods, such as bootstrap, decision trees, t-test, and permutations to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: * Tests and estimation procedures for one, two, and multiple samples * Model building * Multivariate analysis * Complex experimental design Throughout the text, Microsoft Office Excel(r) is used to illustrate new concepts and assist readers in completing exercises. An Excel Primer is included as an Appendix for readers who need to learn or brush up on their Excel skills. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: * More than 100 exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills * Companion FTP site provides access to all data sets discussed in the text * An Instructor's Manual is available upon request from the publisher * Dozens of thought-provoking questions in the final chapter assist readers in applying statistics to solve real-life problems * Helpful appendices include an index to Excel and Excel add-in functions This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited to both students and practitioners.
Author | : G. Jay Kerns |
Publisher | : Lulu.com |
Total Pages | : 388 |
Release | : 2010-01-10 |
Genre | : Education |
ISBN | : 0557249791 |
This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
Author | : Phillip Good |
Publisher | : Springer Science & Business Media |
Total Pages | : 238 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475723466 |
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.
Author | : Larry Wasserman |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2013-12-11 |
Genre | : Mathematics |
ISBN | : 0387217363 |
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Author | : Gareth James |
Publisher | : Springer Nature |
Total Pages | : 617 |
Release | : 2023-08-01 |
Genre | : Mathematics |
ISBN | : 3031387473 |
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Author | : David Ruppert |
Publisher | : Springer |
Total Pages | : 736 |
Release | : 2015-04-21 |
Genre | : Business & Economics |
ISBN | : 1493926144 |
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.