Combinatorial Group Theory, Discrete Groups, and Number Theory

Combinatorial Group Theory, Discrete Groups, and Number Theory
Author: Benjamin Fine
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2006
Genre: Mathematics
ISBN: 0821839853

This volume consists of contributions by participants and speakers at two conferences. The first was entitled Combinatorial Group Theory, Discrete Groups and Number Theory and was held at Fairfield University, December 8-9, 2004. It was in honor of Professor Gerhard Rosenberger's sixtieth birthday. The second was the AMS Special Session on Infinite Group Theory held at Bard College, October 8-9, 2005. The papers in this volume provide a very interesting mix of combinatorial group theory, discrete group theory and ring theory as well as contributions to noncommutative algebraic cryptography.

Combinatorial Number Theory and Additive Group Theory

Combinatorial Number Theory and Additive Group Theory
Author: Alfred Geroldinger
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 2009-04-15
Genre: Mathematics
ISBN: 3764389613

Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of a great variety of mathematical techniques, including combinatorics, harmonic analysis, convex geometry, graph theory, probability theory, algebraic geometry or ergodic theory. This book gathers the contributions of many of the leading researchers in the area and is divided into three parts. The two first parts correspond to the material of the main courses delivered, Additive combinatorics and non-unique factorizations, by Alfred Geroldinger, and Sumsets and structure, by Imre Z. Ruzsa. The third part collects the notes of most of the seminars which accompanied the main courses, and which cover a reasonably large part of the methods, techniques and problems of contemporary additive combinatorics.

Combinatorial Group Theory

Combinatorial Group Theory
Author: Daniel E. Cohen
Publisher: Cambridge University Press
Total Pages: 325
Release: 1989-08-17
Genre: Mathematics
ISBN: 0521341337

In this book the author aims to show the value of using topological methods in combinatorial group theory.

Topological Methods in Group Theory

Topological Methods in Group Theory
Author: Ross Geoghegan
Publisher: Springer Science & Business Media
Total Pages: 473
Release: 2007-12-17
Genre: Mathematics
ISBN: 0387746110

This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.

Two-Dimensional Homotopy and Combinatorial Group Theory

Two-Dimensional Homotopy and Combinatorial Group Theory
Author: Cynthia Hog-Angeloni
Publisher: Cambridge University Press
Total Pages: 428
Release: 1993-12-09
Genre: Mathematics
ISBN: 0521447003

Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.

The Geometry of Discrete Groups

The Geometry of Discrete Groups
Author: Alan F. Beardon
Publisher: Springer Science & Business Media
Total Pages: 350
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461211468

This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.

Extremal Finite Set Theory

Extremal Finite Set Theory
Author: Daniel Gerbner
Publisher: CRC Press
Total Pages: 292
Release: 2018-10-12
Genre: Mathematics
ISBN: 0429804113

Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.

Permutation Groups and Combinatorial Structures

Permutation Groups and Combinatorial Structures
Author: Norman Biggs
Publisher: Cambridge University Press
Total Pages: 153
Release: 1979-08-16
Genre: Mathematics
ISBN: 0521222877

The subject of this book is the action of permutation groups on sets associated with combinatorial structures. Each chapter deals with a particular structure: groups, geometries, designs, graphs and maps respectively. A unifying theme for the first four chapters is the construction of finite simple groups. In the fifth chapter, a theory of maps on orientable surfaces is developed within a combinatorial framework. This simplifies and extends the existing literature in the field. The book is designed both as a course text and as a reference book for advanced undergraduate and graduate students. A feature is the set of carefully constructed projects, intended to give the reader a deeper understanding of the subject.

Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory
Author: John Stillwell
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461243726

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.