Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)
Author: Chi Hau Chen
Publisher: World Scientific
Total Pages: 1045
Release: 1999-03-12
Genre: Computers
ISBN: 9814497649

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Texture Analysis in Machine Vision

Texture Analysis in Machine Vision
Author: Matti Pietik„inen
Publisher: World Scientific
Total Pages: 284
Release: 2000
Genre: Computers
ISBN: 9789810243739

d104ure analysis is an important generic research area of machine vision. The potential areas of application include biomedical image analysis, industrial inspection, analysis of satellite or aerial imagery, content-based retrieval from image databases, document analysis, biometric person authentication, scene analysis for robot navigation, texture synthesis for computer graphics and animation, and image coding. d104ure analysis has been a topic of intensive research for over three decades, but the progress has been very slow.A workshop on ?d104ure Analysis in Machine Vision? was held at the University of Oulu, Finland, in 1999, providing a forum for presenting recent research results and for discussing how to make progress in order to increase the usefulness of texture in practical applications. This book contains extended and revised versions of the papers presented at the workshop. The first part of the book deals with texture analysis methodology, while the second part covers various applications. The book gives a unique view of different approaches and applications of texture analysis. It should be of great interest both to researchers of machine vision and to practitioners in various application areas.

Handbook of Texture Analysis

Handbook of Texture Analysis
Author: Ayman El-Baz
Publisher: CRC Press
Total Pages: 271
Release: 2024-06-21
Genre: Computers
ISBN: 1040008909

The major goals of texture research in computer vision are to understand, model, and process texture and, ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis. This volume presents important branches of texture analysis methods which find a proper application in AI-based medical image analysis. This book: Discusses first-order, second-order statistical methods, local binary pattern (LBP) methods, and filter bank-based methods Covers spatial frequency-based methods, Fourier analysis, Markov random fields, Gabor filters, and Hough transformation Describes advanced textural methods based on DL as well as BD and advanced applications of texture to medial image segmentation Is aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering This is an essential reference for those looking to advance their understanding in this applied and emergent field.

Feature Extraction and Image Processing for Computer Vision

Feature Extraction and Image Processing for Computer Vision
Author: Mark Nixon
Publisher: Academic Press
Total Pages: 629
Release: 2012-12-18
Genre: Computers
ISBN: 0123978246

Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the exemplar code of the algorithms." Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking, development of symmetry operators, LBP texture analysis, Adaboost, and a new appendix on color models. Coverage of distance measures, feature detectors, wavelets, level sets and texture tutorials has been extended. - Named a 2012 Notable Computer Book for Computing Methodologies by Computing Reviews - Essential reading for engineers and students working in this cutting-edge field - Ideal module text and background reference for courses in image processing and computer vision - The only currently available text to concentrate on feature extraction with working implementation and worked through derivation

Image Texture Analysis

Image Texture Analysis
Author: Chih-Cheng Hung
Publisher: Springer
Total Pages: 264
Release: 2019-06-05
Genre: Computers
ISBN: 3030137732

This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book opens with a review of existing models and algorithms for image texture analysis, before delving into the details of the K-views model. The work then concludes with a discussion of popular deep learning methods for image texture analysis. Topics and features: provides self-test exercises in every chapter; describes the basics of image texture, texture features, and image texture classification and segmentation; examines a selection of widely-used methods for measuring and extracting texture features, and various algorithms for texture classification; explains the concepts of dimensionality reduction and sparse representation; discusses view-based approaches to classifying images; introduces the template for the K-views algorithm, as well as a range of variants of this algorithm; reviews several neural network models for deep machine learning, and presents a specific focus on convolutional neural networks. This introductory text on image texture analysis is ideally suitable for senior undergraduate and first-year graduate students of computer science, who will benefit from the numerous clarifying examples provided throughout the work.

Handbook of Texture Analysis

Handbook of Texture Analysis
Author: Majid Mirmehdi
Publisher: World Scientific
Total Pages: 424
Release: 2008
Genre: Computers
ISBN: 1848161158

Texture analysis is one of the fundamental aspects of human vision by which we discriminate between surfaces and objects. In a similar manner, computer vision can take advantage of the cues provided by surface texture to distinguish and recognize objects. In computer vision, texture analysis may be used alone or in combination with other sensed features (e.g. color, shape, or motion) to perform the task of recognition. Either way, it is a feature of paramount importance and boasts a tremendous body of work in terms of both research and applications.Currently, the main approaches to texture analysis must be sought out through a variety of research papers. This collection of chapters brings together in one handy volume the major topics of importance, and categorizes the various techniques into comprehensible concepts. The methods covered will not only be relevant to those working in computer vision, but will also be of benefit to the computer graphics, psychophysics, and pattern recognition communities, academic or industrial.

Texture Feature Extraction Techniques for Image Recognition

Texture Feature Extraction Techniques for Image Recognition
Author: Jyotismita Chaki
Publisher: Springer Nature
Total Pages: 109
Release: 2019-10-24
Genre: Technology & Engineering
ISBN: 9811508534

The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based. It also covers applications related to texture features, such as facial imaging. It is a valuable resource for machine vision researchers and practitioners in different application areas.

Color in Computer Vision

Color in Computer Vision
Author: Theo Gevers
Publisher: John Wiley & Sons
Total Pages: 315
Release: 2012-08-14
Genre: Technology & Engineering
ISBN: 1118350065

While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.

Computer Vision Technology for Food Quality Evaluation

Computer Vision Technology for Food Quality Evaluation
Author: Da-Wen Sun
Publisher: Elsevier
Total Pages: 600
Release: 2011-04-28
Genre: Technology & Engineering
ISBN: 0080556248

The first book in this rapidly expanding area, Computer Vision Technology for Food Quality Evaluation thoroughly discusses the latest advances in image processing and analysis. Computer vision has attracted much research and development attention in recent years and, as a result, significant scientific and technological advances have been made in quality inspection, classification and evaluation of a wide range of food and agricultural products. This unique work provides engineers and technologists working in research, development, and operations in the food industry with critical, comprehensive and readily accessible information on the art and science of computer vision technology. Undergraduate and postgraduate students and researchers in universities and research institutions will also find this an essential reference source.· Discusses novel technology for recognizing objects and extracting quantitative information from digital images in order to provide objective, rapid, non-contact and non-destructive quality evaluation. · International authors with both academic and professional credentials address in detail one aspect of the relevant technology per chapter making this ideal for textbook use· Divided into three parts, it begins with an outline of the fundamentals of the technology, followed by full coverage of the application in the most researched areas of meats and other foods, fruits, vegetables and grains.

Machine Vision Algorithms in Java

Machine Vision Algorithms in Java
Author: Paul F. Whelan
Publisher: Springer Science & Business Media
Total Pages: 293
Release: 2012-12-06
Genre: Computers
ISBN: 1447102517

This book presents key machine vision techniques and algorithms, along with the associated Java source code. Special features include a complete self-contained treatment of all topics and techniques essential to the understanding and implementation of machine vision; an introduction to object-oriented programming and to the Java programming language, with particular reference to its imaging capabilities; Java source code for a wide range of real-world image processing and analysis functions; an introduction to the Java 2D imaging and Java Advanced Imaging (JAI) API; and a wide range of illustrative examples.