Partial Differential Equations

Partial Differential Equations
Author: D. Sloan
Publisher: Elsevier
Total Pages: 480
Release: 2012-12-02
Genre: Mathematics
ISBN: 0080929567

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Author: Peter Knabner
Publisher: Springer Science & Business Media
Total Pages: 437
Release: 2003-06-26
Genre: Mathematics
ISBN: 038795449X

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Generalized Collocation Methods

Generalized Collocation Methods
Author: Nicola Bellomo
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2007-09-26
Genre: Mathematics
ISBN: 0817646108

Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.

Recent Advances in Scientific Computing and Applications

Recent Advances in Scientific Computing and Applications
Author: Jichun Li
Publisher: American Mathematical Soc.
Total Pages: 397
Release: 2013-04-24
Genre: Mathematics
ISBN: 0821887378

This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.

Handbook of Splines

Handbook of Splines
Author: Gheorghe Micula
Publisher: Springer Science & Business Media
Total Pages: 622
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401153388

The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.

Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment

Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment
Author: Zhangxin Chen
Publisher: American Mathematical Soc.
Total Pages: 538
Release: 2002
Genre: Mathematics
ISBN: 082182807X

The June 2001 conference brought together mathematicians, computational scientists, and engineers working on the mathematical and numerical treatment of fluid flow and transport in porous media. This collection of 43 papers from that conference reports on recent advances in network flow modeling, parallel computation, optimization, upscaling, uncertainty reduction, media characterization, and chemically reactive phenomena. Topics include modeling horizontal wells using hybrid grids in reservoir simulation, a high order Lagrangian scheme for flow through unsaturated porous media, and a streamline front tracking method for two- and three- phase flow. No index. Annotation copyrighted by Book News, Inc., Portland, OR.

Mathematics for Large Scale Computing

Mathematics for Large Scale Computing
Author: Julio Diaz
Publisher: CRC Press
Total Pages: 362
Release: 2020-06-29
Genre: Mathematics
ISBN: 1000657639

During recent years a great deal of interest has been devoted to large scale computing applications. This has occurred in great part because of the introduction of advanced high performance computer architectures. The book contains survey articles as well as chapters on specific research applications, development and analysis of numerical algorithms, and performance evaluation of algorithms on advanced architectures. The effect of specialized architectural features on the performance of large scale computation is also considered by several authors. Several areas of applications are represented, including the numerical solution of partial differential equations, iterative techniques for large structured problems, the numerical solution of boundary value problems for ordinary differential equations, numerical optimization, and numerical quadrature. Mathematical issues in computer architecture are also presented, including the description of grey codes for generalized hypercubes. The results presented in this volume give, in our opinion, a representative picture of today’s state of the art in several aspects of large scale computing.

Meshfree Methods for Partial Differential Equations VI

Meshfree Methods for Partial Differential Equations VI
Author: Michael Griebel
Publisher: Springer Science & Business Media
Total Pages: 243
Release: 2012-12-16
Genre: Computers
ISBN: 3642329799

Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. Especially in a time-dependent setting or in the treatment of problems with strongly singular solutions their independence of a mesh makes these methods highly attractive. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. ​