Optimized-Motion Planning

Optimized-Motion Planning
Author: Cherif Ahrikencheikh
Publisher: Wiley-Interscience
Total Pages: 400
Release: 1994-10-14
Genre: Science
ISBN:

The first handbook to the practical specifics of motion planning, Optimized-Motion Planning offers design engineers methods and insights for solving real motion planning problems in a 3-dimensional space. Complete with a disk of software programs, this unique guide allows users to design, test, and implement possible solutions, useful in a host of contexts, especially tool path planning. Beginning with a brief overview of the general class of problems examined within the book as well as available solution techniques, Part 1 familiarizes the reader with the conceptual threads that underlie each approach. This early discussion also considers the specific applications of each technique as well as its computational efficiency. Part 2 illustrates basic problem-solving methodology by considering the case of a point moving between stationary polygons in a plane. This section features algorithms for data organization and storage, the concepts of passage networks and feasibility charts, as well as the path optimization algorithm. Elaborating on the problematic model described in Part 2, Part 3 develops an algorithm for optimizing the motion of a point between stationary polyhedra in a 3-dimensional space. This algorithm is first applied to the case of nonpoint objects moving between obstacles that can be stationary or moving with known patterns. It's then used in connection with the extensively investigated problem of motion planning for multilink manipulators.

Planning Algorithms

Planning Algorithms
Author: Steven M. LaValle
Publisher: Cambridge University Press
Total Pages: 844
Release: 2006-05-29
Genre: Computers
ISBN: 9780521862059

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

The Complexity of Robot Motion Planning

The Complexity of Robot Motion Planning
Author: John Canny
Publisher: MIT Press
Total Pages: 220
Release: 1988
Genre: Computers
ISBN: 9780262031363

The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.

Simulating Humans

Simulating Humans
Author: Norman I. Badler
Publisher: Oxford University Press, USA
Total Pages: 287
Release: 1993-09-02
Genre: Computers
ISBN: 0195073592

The area of simulated human figures is an active research area in computer graphics, and Norman Badler's group at the University of Pennsylvania is one of the leaders in the field. This book summarizes the state of the art in simulating human figures, discusses many of the interesting application areas, and makes some assumptions and predictions about where the field is going.

Robotica

Robotica
Author:
Publisher:
Total Pages: 616
Release: 1994
Genre: Artificial intelligence
ISBN:

Autonomous Robot Vehicles

Autonomous Robot Vehicles
Author: Ingemar J. Cox
Publisher: Springer Science & Business Media
Total Pages: 478
Release: 2012-12-06
Genre: Computers
ISBN: 1461389976

Autonomous robot vehicles are vehicles capable of intelligent motion and action without requiring either a guide or teleoperator control. The recent surge of interest in this subject will grow even grow further as their potential applications increase. Autonomous vehicles are currently being studied for use as reconnaissance/exploratory vehicles for planetary exploration, undersea, land and air environments, remote repair and maintenance, material handling systems for offices and factories, and even intelligent wheelchairs for the disabled. This reference is the first to deal directly with the unique and fundamental problems and recent progress associated with autonomous vehicles. The editors have assembled and combined significant material from a multitude of sources, and, in effect, now conviniently provide a coherent organization to a previously scattered and ill-defined field.