Coherent Multidimensional Spectroscopy
Download Coherent Multidimensional Spectroscopy full books in PDF, epub, and Kindle. Read online free Coherent Multidimensional Spectroscopy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Minhaeng Cho |
Publisher | : Springer |
Total Pages | : 404 |
Release | : 2019-08-06 |
Genre | : Science |
ISBN | : 9811397538 |
This book will fulfill the needs of time-domain spectroscopists who wish to deepen their understanding of both the theoretical and experimental features of this cutting-edge spectroscopy technique. Coherent Multidimensional Spectroscopy (CMDS) is a state-of-the-art technique with applications in a variety of subjects like chemistry, molecular physics, biochemistry, biophysics, and material science. Due to dramatic advancements of ultrafast laser technologies, diverse multidimensional spectroscopic methods utilizing combinations of THz, IR, visible, UV, and X-ray radiation sources have been developed and used to study real time dynamics of small molecules in solutions, proteins and nucleic acids in condensed phases and membranes, single and multiple excitons in functional materials like semiconductors, quantum dots, and solar cells, photo-excited states in light-harvesting complexes, ions in battery electrolytes, electronic and conformational changes in charge or proton transfer systems, and excess electrons and protons in water and biological systems.
Author | : Minhaeng Cho |
Publisher | : CRC Press |
Total Pages | : 396 |
Release | : 2009-06-16 |
Genre | : Medical |
ISBN | : 1420084305 |
Two-Dimensional Optical Spectroscopy discusses the principles and applications of newly emerging two-dimensional vibrational and optical spectroscopy techniques. It provides a detailed account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy. It also bridges the gap between the formal developm
Author | : Tiago Buckup |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2019-01-21 |
Genre | : Science |
ISBN | : 9783030024772 |
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Author | : Isao Noda |
Publisher | : John Wiley & Sons |
Total Pages | : 310 |
Release | : 2005-01-14 |
Genre | : Science |
ISBN | : 0470012390 |
A valuable tool for individuals using correlation spectroscopy and those that want to start using this technique. Noda is known as the founder of this technique, and together with Ozaki, they are the two biggest names in the area First book on 2D vibrational and optical spectroscopy - single source of information, pulling together literature papers and reveiws Growing number of applications of this methodology - book now needed for people thinking of using this technique Limitations and benefits discussed and comparisons made with 2D NMR Discusses 20 optical and vibrational spectroscopy (IR, Raman, UV, Visible)
Author | : Hebin Li |
Publisher | : Oxford University Press |
Total Pages | : 305 |
Release | : 2023-02-28 |
Genre | : Science |
ISBN | : 0192657623 |
This book provides an introduction to optical multidimensional coherent spectroscopy, a relatively new method of studying materials based on using ultrashort light pulses to perform spectroscopy. The technique has been developed and perfected over the last 25 years, resulting in multiple experimental approaches and applications to a broad array of systems ranging from atoms and molecules to solids and biological systems. Indeed, while this method is most often used by physical chemists, it is also relevant to materials of interest to physicists, which is the primary focus of this book. As well as an introduction to the method, the book also provides tutorials on the interpretation of the rather complex spectra that is broadly applicable across all subfields, and finishes with a survey of several emerging material systems and a discussion of future directions.
Author | : Roberto Marquardt |
Publisher | : Elsevier |
Total Pages | : 376 |
Release | : 2020-09-18 |
Genre | : Science |
ISBN | : 0128172355 |
Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure
Author | : Thomas Weinacht |
Publisher | : CRC Press |
Total Pages | : 454 |
Release | : 2018-12-21 |
Genre | : Science |
ISBN | : 0429804172 |
This concise and carefully developed text offers a reader friendly guide to the basics of time-resolved spectroscopy with an emphasis on experimental implementation. The authors carefully explain and relate for the reader how measurements are connected to the core physical principles. They use the time-dependent wave packet as a building block for understanding quantum dynamics, progressively advancing to more complex topics. The topics are discussed in paired sections, one discussing the theory and the next presenting the related experimental methods. A wide range of readers including students and newcomers to the field will gain a clear and practical understanding of how to measure aspects of molecular dynamics such as wave packet motion, intramolecular vibrational relaxation, and electron-electron coupling, and how to describe such measurements mathematically.
Author | : Peter Hamm |
Publisher | : Cambridge University Press |
Total Pages | : 297 |
Release | : 2011-02-24 |
Genre | : Science |
ISBN | : 1139497073 |
2D infrared (IR) spectroscopy is a cutting-edge technique, with applications in subjects as diverse as the energy sciences, biophysics and physical chemistry. This book introduces the essential concepts of 2D IR spectroscopy step-by-step to build an intuitive and in-depth understanding of the method. This unique book introduces the mathematical formalism in a simple manner, examines the design considerations for implementing the methods in the laboratory, and contains working computer code to simulate 2D IR spectra and exercises to illustrate involved concepts. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded from the authors' website, available at www.cambridge.org/9781107000056.
Author | : Dieter Bimberg |
Publisher | : Springer Science & Business Media |
Total Pages | : 369 |
Release | : 2008-06-03 |
Genre | : Technology & Engineering |
ISBN | : 3540778993 |
Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the world.
Author | : Peter Hannaford |
Publisher | : Springer Science & Business Media |
Total Pages | : 350 |
Release | : 2005-12-27 |
Genre | : Science |
ISBN | : 038723294X |
The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated. As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for n- reactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.