Novel Materials for Carbon Dioxide Mitigation Technology

Novel Materials for Carbon Dioxide Mitigation Technology
Author: Bryan Morreale
Publisher: Elsevier
Total Pages: 413
Release: 2015-06-01
Genre: Technology & Engineering
ISBN: 0444632611

Materials for Carbon Dioxide Mitigation Technology offers expert insight and experience from recognized authorities in advanced material development in carbon mitigation technology and constitutes a comprehensive guide to the selection and design of a wide range of solvent/sorbent/catalyst used by scientists globally. It appeals to chemical scientists, material scientists and engineers, energy researchers, and environmental scientists from academia, industry, and government in their research directed toward greener, more efficient carbon mitigation processes. Emphasizes material development for carbon mitigation technologies rather than regulations Provides a fundamental understanding of the underpinning science as well as technological approaches to implement carbon capture, utilization and storage technologies Introduces the driving force behind novel materials, their performance and applications for carbon dioxide mitigation Contains figures, tables and an abundance of examples clearly explaining the development, characterization and evaluation of novel carbon mitigation materials Includes hundreds of citations drawing on the most recent published works on the subject Provides a wealth of real-world examples, illustrating how to bridge nano-scale materials to bulk carbon mitigation properties

Development of Green CO2 Capture Technologies Using Immobilized Carbonic Anhydrase Enzyme

Development of Green CO2 Capture Technologies Using Immobilized Carbonic Anhydrase Enzyme
Author: Hannaneh Rasouli Kenari
Publisher:
Total Pages: 193
Release: 2022
Genre:
ISBN:

Anthropogenic activities have significantly enhanced the amount of greenhouse gases (GHGs) in the atmosphere and are a major contributor to global warming. Carbon dioxide (CO2) is a primary greenhouse gas that contributes to climate change. Various technologies are being explored across the world to tackle CO2 capture and sequestration. Despite their efficiency, amine-based solutions have negative environmental impact and the process is energy intensive. CO2 absorption using carbonic anhydrase (CA) enzyme as catalyst (free insolution or immobilized) is a promising technology which offers high selectivity and efficiency in CO2 capture processes by using nontoxic and more energy efficient solvents. CA is a well-known biocatalyst endowed with an extraordinary turnover number (TON), which offers to it a very high capacity to boost CO2 hydration. CA immobilization on solid surfaces enhances the enzyme stability, and reusability and provides the ability for easy separation of the reaction products without biocatalyst contamination. In this context, the present thesis focuses on the investigation of CO2 absorption process using immobilized CA in different bioreactors. More specifically, the main objectives are: i) developing an enhanced enzymatic process with immobilized CA enzyme in a packed-bedcolumn bioreactor, ii) studying the CO2 absorption in membrane contactor with immobilized CA enzyme on membrane surface, and iii) proposing a novel hybrid enzymatic process in an intensified flat sheet membrane contactor for improving CO2 absorption via immobilized CA enzyme on both membrane and magnetic nanoparticles (MNPs). An improved CA immobilization technique was developed in this work using two steps: (i) co-deposition of Polydopamine (PDA)/Polyethyleneimine (PEI) with amino functional groups for amine-functionalization of surfaces and (ii) covalent enzyme immobilization on the aminated surfaces using glutaraldehyde. The proposed approach is appealing because ofits simplicity, abundant amine functionalities of PEI, and great adhesion capacity of PDA during surface functionalization process, as well as the stability and reusability of immobilized enzyme via covalent bonding. A hybrid enzymatic process with CA enzyme immobilized on packing surface and MNPs dispersed in the liquid absorbent (water) was developed in a gas-liquid packed-bed column bioreactor. CA was immobilized on amine functionalized surface of MNPs and packings via covalent attachments. Even after 40 days of storage in buffer solution, the immobilized CA on packing and MNPs showed remarkable stability, retaining 80% and 84.7% of its original activity, respectively. Since the enzyme immobilized on MNPs operates as a free solution-phase enzyme, the CO2 hydration process improved significantly, specially when the diffusion limitation in the enzymatic process with immobilized CA enzyme on the packing surface was significant. CA enzyme immobilized on polypropylene (PP) flat sheet membrane surface via co-deposition of PDA/PEI through covalent bonding method showed the highest activity and preserved most of its initial activity after 40 days (82.3%). A CO2 absorption flux of 0.29×10-3 mol/m2s was attained by integrating the biocatalytic membrane into a flat sheet membrane contactor (FSMC) using water as absorbent. Stable CO2 absorption rate was obtained during a longer time operation (6 hours), illustrating its potential for industrial applications. Mass transfer resistance in partially liquid-filled membrane pores was shown to be reduced by the catalyzed CO2 hydration in these pores in the presence of immobilized CA. CO2 absorption in flat sheet membrane contactor with immobilized CA on membrane surface was intensified by the incorporation of immobilized CA on the surface of MNPs dispersed in the liquid phase. CO2 absorption process was improved due to the presence of biocatalytic MNPs, which act as a free solution-phase enzyme. CA was covalently immobilized on amine-functionalized MNPs surface. The proposed innovative hybrid enzymatic process in the intensified membrane contactor improved the CO2 absorption by maximizing the utilization of CA’s large TON, specially at lower CA loadings on the biocatalytic membrane. Immobilized membrane and MNPs demonstrated their reusability and retained their initial activities even after 10 absorption cycles. The intensified membrane contactor also displayed a stable operation for several hours. In conclusion, the results achieved in our work illustrate that CO2 capture using immobilized CA can offer a cost-effective, green, and environmentally friendly strategy, representing an attracting alternative to customary technologies using amine-based absorbents. With the growing environmental crisis, enzymatic CO2 capture technologies are becoming more important, prompting more attempts to implement them on industrial scales.

HPLC

HPLC
Author: Joel K. Swadesh
Publisher: CRC Press
Total Pages: 480
Release: 2000-12-21
Genre: Science
ISBN: 1420042661

Product specifications, regulatory constraints, and tight production schedules impose considerable pressures on separation scientists in industry. The first edition of HPLC: Practical and Industrial Applications helped eliminate the need for extensive library or laboratory research when confronting a problem, an unfamiliar technique, or work in a n

Carbon Capture

Carbon Capture
Author: Jennifer Wilcox
Publisher: Springer Science & Business Media
Total Pages: 337
Release: 2012-03-28
Genre: Science
ISBN: 1461422140

This book approaches the energy science sub-field carbon capture with an interdisciplinary discussion based upon fundamental chemical concepts ranging from thermodynamics, combustion, kinetics, mass transfer, material properties, and the relationship between the chemistry and process of carbon capture technologies. Energy science itself is a broad field that spans many disciplines -- policy, mathematics, physical chemistry, chemical engineering, geology, materials science and mineralogy -- and the author has selected the material, as well as end-of-chapter problems and policy discussions, that provide the necessary tools to interested students.

The Pearson Guide To GPAT and other Entrance Examination in Pharmacy

The Pearson Guide To GPAT and other Entrance Examination in Pharmacy
Author: Umang H Shah
Publisher: Pearson Education India
Total Pages: 852
Release: 2017
Genre:
ISBN: 933258785X

The Pearson Guide to GPAT and Other Competitive Examinations in Pharmacy• The entire book is divided into six modules as per GPAT syllabus which also covers thesyllabus of all other entrance examinations like NIPER, MAHCET and GUJCET and MANIPAL

Quality and Reliability in Analytical Chemistry

Quality and Reliability in Analytical Chemistry
Author: George E. Baiulescu
Publisher: CRC Press
Total Pages: 120
Release: 2000-09-28
Genre: Science
ISBN: 1420038575

Quality and reliability are central to success in every discipline, but perhaps nowhere are they more important or more interconnected than in the practice of analytical chemistry. Here, although reliable analytical information implies quality, not all "quality" information proves reliable. Quality and Reliability in Analytical Chemistry examine

Chemical Reactor Development

Chemical Reactor Development
Author: D. Thoenes
Publisher: Springer Science & Business Media
Total Pages: 366
Release: 1994-07-31
Genre: Science
ISBN: 0792330277

Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is conceived. It is also written for those chemists and chemical engineers who are concerned with the further development of a chemical process with the objective of enhancing the performance of an existing industrial plant, as well as for students of chemistry and chemical engineering. In Part I, the `how' and the `why' of chemical reaction engineering are explained, particularly for those who are not familiar with this area. Part II deals with the effects of a number of physical phenomena on the outcome of chemical reactions, such as micro and meso-mixing and residence time distribution, mass transfer between two phases, and the formation of another phase, such as in precipitations. These scale-dependent effects are not only important in view of the conversion of chemical reactions, but also with regard to the selectivity, and in the case of solid products, to their morphology. In Part III, some applications are treated in a general way, including organic syntheses, the conversion and formation of inorganic solids, catalytic processes and polymerizations. The last chapter gives a review of the importance of the selectivity for product quality and for the purity of waste streams. For research chemists and chemical engineers whose work involves chemical reaction engineering. The book is also suitable as a supplementary graduate text.

Phonetics, Theory and Application

Phonetics, Theory and Application
Author: William R. Tiffany
Publisher: McGraw-Hill Humanities, Social Sciences & World Languages
Total Pages: 456
Release: 1977
Genre: Language Arts & Disciplines
ISBN:

Experiments in Catalytic Reaction Engineering

Experiments in Catalytic Reaction Engineering
Author: J.M. Berty
Publisher: Elsevier
Total Pages: 289
Release: 1999-08-11
Genre: Technology & Engineering
ISBN: 0080531423

The science of catalytic reaction engineering studies the catalyst and the catalytic process in the laboratory in order to predict how they will perform in production-scale reactors. Surprises are to be avoided in the scaleup of industrial processes. The laboratory results must account for flow, heat and mass transfer influences on reaction rate to be useful for scaleup. Calculated performance based on these results must also be useful to maximization of profit and safety and minimization of pollution. To this end, information on products as well as byproducts and heat produced must be generated. If a sufficiently large database of knowledge is produced, optimization studies will be possible later if economic conditions change. The field of reaction engineering required new tools. For kinetic and catalyst testing, the most successful of these tools was the internal recycle reactor. Studies in recycle reactors can be made under well-defined conditions of flow and associated transfer processes, and close to commercial operation. The recycle reactor eliminates or minimizes the effect of transfer process, and allows the remaining ones to be known. Features of this book: • Provides insight into a field that is neither well understood nor properly appreciated. • Gives a deeper understanding of reaction engineering practice. • Helps avoid frustration and disappointment in industrial research. This book is short and clear enough to assist all members of the R&D and Engineering team, whether reaction engineers, or specialists in other fields. This is critical in this new age of computation and communication, when team members must each know at least something of their colleagues' fields. Additionally, many scientists in more exploratory or fundamental fields can use recycle reactors to study basic phenomena free of transfer interactions.