Co-Optimization of Internal Combustion Engines and Biofuels

Co-Optimization of Internal Combustion Engines and Biofuels
Author:
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:

The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to be realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.

Advances in Biofuels Production, Optimization and Applications

Advances in Biofuels Production, Optimization and Applications
Author: Mejdi Jeguirim
Publisher: Elsevier
Total Pages: 334
Release: 2023-09-08
Genre: Science
ISBN: 0323950779

Advances in Biofuels Production, Optimization and Applications discusses the optimization of chemical, biochemical, thermochemical and hydrothermal processes for biofuels. With a strong focus on applications, the book bridges the gap between technological developments and prospects of commercialization. Initial chapters review efficient hydrolysis and biofuel and bio-alcohol production before reviewing key processes such as biomass gasification, syngas conversion to biofuel, and pyrolysis techniques. Several biofuel applications are presented, including those within the transport industry as well as domestic and industrial boilers. The book then finishes with a review of the circular economy, biofuel policies and ethical considerations. This will act as a systematic reference on the range of biomass conversion processes and technologies in biofuels production. It is an essential read for students, researchers and engineers interested in renewable energy, biotechnology, biofuels production and chemical engineering. - Provides recent advances in the processes and technologies currently used for biofuel production - Addresses the technology transfer of integrated biofuel upgrading and production at large scale - Highlights policy and economics of biofuel production, biofuel value chains, and how to accomplish cost-competitive results and sustainable development - Examines recent development in engines and boiler technologies for the eco-friendly applications of these biofuels in the industry and transport sectors

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
Author: Jihad Badra
Publisher: Elsevier
Total Pages: 262
Release: 2022-01-05
Genre: Technology & Engineering
ISBN: 032388458X

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design. - Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems - Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments - Discusses data driven optimization techniques for fuel formulations and vehicle control calibration

Biofueled Reciprocating Internal Combustion Engines

Biofueled Reciprocating Internal Combustion Engines
Author: K.A. Subramanian
Publisher: CRC Press
Total Pages: 262
Release: 2017-10-02
Genre: Technology & Engineering
ISBN: 1138033197

Biofuels such as ethanol, butanol, and biodiesel have more desirable physico-chemical properties than base petroleum fuels (diesel and gasoline), making them more suitable for use in internal combustion engines. The book begins with a comprehensive review of biofuels and their utilization processes and culminates in an analysis of biofuel quality and impact on engine performance and emissions characteristics, while discussing relevant engine types, combustion aspects and effect on greenhouse gases. It will facilitate scattered information on biofuels and its utilization has to be integrated as a single information source. The information provided in this book would help readers to update their basic knowledge in the area of "biofuels and its utilization in internal combustion engines and its impact Environment and Ecology". It will serve as a reference source for UG/PG/Ph.D. Doctoral Scholars for their projects / research works and can provide valuable information to Researchers from Academic Universities and Industries. Key Features: • Compiles exhaustive information of biofuels and their utilization in internal combustion engines. • Explains engine performance of biofuels • Studies impact of biofuels on greenhouse gases and ecology highlighting integrated bio-energy system. • Discusses fuel quality of different biofuels and their suitability for internal combustion engines. • Details effects of biofuels on combustion and emissions characteristics.

Advances in Eco-Fuels for a Sustainable Environment

Advances in Eco-Fuels for a Sustainable Environment
Author: Abul Kalam Azad
Publisher: Woodhead Publishing
Total Pages: 520
Release: 2018-11-30
Genre: Technology & Engineering
ISBN: 008102777X

Advances in Eco-fuels for Sustainable Environment presents the most recent developments in the field of environmentally friendly eco-fuels. Dr. Kalad Azad and his team of contributors analyze the latest bio-energy technologies and emission control strategies, while also considering other important factors, such as environmental sustainability and energy efficiency improvement. Coverage includes biofuel extraction and conversion technologies, the implementation of biotechnologies and system improvement methods in the process industries. This book will help readers develop a deeper understanding of the relevant concepts and solutions to global sustainability issues with the goal of achieving cleaner, more efficient energy. Energy industry practitioners, energy policymakers and government organizations, renewables researchers and academics will find this book extremely useful. - Focuses on recent developments in the field of eco-fuels, applying concepts to various medium-large scale industries - Considers the societal and environmental benefits, along with an analysis of technologies and research - Includes contributions from industry experts and global case studies to demonstrate the application of the research and technologies discussed

Advances in Internal Combustion Engine Research

Advances in Internal Combustion Engine Research
Author: Dhananjay Kumar Srivastava
Publisher: Springer
Total Pages: 346
Release: 2017-11-29
Genre: Technology & Engineering
ISBN: 9811075751

This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
Total Pages: 812
Release: 2015-09-28
Genre: Science
ISBN: 0309373913

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Combustion Chemistry and the Carbon Neutral Future

Combustion Chemistry and the Carbon Neutral Future
Author: Kenneth Brezinsky
Publisher: Elsevier
Total Pages: 666
Release: 2023-02-16
Genre: Science
ISBN: 0323993109

As the demands for cleaner, more efficient, reduced and zero carbon emitting transportation increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of engine emissions and soot, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols and other bio-oxygenates, natural gas, syngas and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, supercritical fluid combustion, and diagnostic monitoring even at high pressure, are then explored. Some novel aspects of biomass derived aviation fuels and combustion synthesis are also covered. Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies. - Provides insight on current developments in combustion chemistry as a tool for supporting a reduced-carbon future - Reviews modeling and diagnostic tools, in addition to key approaches and alternative fuels - Includes projections for the future from leaders in the field, pointing current and prospective researchers to potentially fruitful areas for exploration

Application of Liquid Biofuels to Internal Combustion Engines

Application of Liquid Biofuels to Internal Combustion Engines
Author: Soo-Young No
Publisher: Springer Nature
Total Pages: 480
Release: 2020-02-17
Genre: Technology & Engineering
ISBN: 981136737X

This book provides a comprehensive overview of the application of liquid biofuels to internal combustion (IC) engines. Biofuels are one of the most promising renewable and sustainable energy sources. Particularly, liquid biofuels obtained from biomass could become a valid alternative to the use of fossil fuels in the light of increasingly stringent environmental constraints. In this book, the discussion is limited to liquid biofuels obtained from triglycerides and lignocellulose among the many different kinds of biomass. Several liquid biofuels from triglycerides, straight vegetable oil, biodiesel produced from inedible vegetable oil, hydrotreated vegetable oil, and pyrolytic oil have been selected for discussion, as well as biofuels from lignocellulose bio-oil, alcohols such as methanol, ethanol and butanol, and biomass-to-liquids diesel. This book includes three chapters on the application of methanol, ethanol and butanol to advanced compression ignition (CI) engines such as LTC, HCCI, RCCI and DF modes. Further, the application of other higher alcohols and other drop-in fuels such as DMF, MF, MTHF, and GVL are also discussed. The book will be a valuable resource for graduate students, researchers and engine designers who are interested in the application of alcohols and other biofuels in advanced CI engines, and also useful for alternative energy planners selecting biofuels for CI engines in the future.

Introduction to Materials for Advanced Energy Systems

Introduction to Materials for Advanced Energy Systems
Author: Colin Tong
Publisher: Springer
Total Pages: 930
Release: 2018-12-12
Genre: Technology & Engineering
ISBN: 3319980025

This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights