Cluster Models And Other Topics

Cluster Models And Other Topics
Author: S A Chin
Publisher: World Scientific
Total Pages: 520
Release: 1987-02-01
Genre: Science
ISBN: 9814513628

This volume consists of contributions from some of Japan's most eminent nuclear theorists. The cluster model of the nucleus is discussed pedagogically and the current status of the field is surveyed. A contribution on Monte Carlo Methods and Lattice Gauge Theories gives nuclear theorists a glimpse of related developments in QCD and Gauge Theories. Few Body Systems are reviewed by Y Akaishi, paying special attention to the ATMS Multiple Scattering Method.

Cluster Models and Other Topics

Cluster Models and Other Topics
Author: Yoshinori Akaishi
Publisher: World Scientific
Total Pages: 538
Release: 1986
Genre: Science
ISBN: 9789971500788

This volume consists of contributions from some of Japan's most eminent nuclear theorists. The cluster model of the nucleus is discussed pedagogically and the current status of the field is surveyed. A contribution on Monte Carlo Methods and Lattice Gauge Theories gives nuclear theorists a glimpse of related developments in QCD and Gauge Theories. Few Body Systems are reviewed by Y Akaishi, paying special attention to the ATMS Multiple Scattering Method.

Clustering Algorithms

Clustering Algorithms
Author: John A. Hartigan
Publisher: John Wiley & Sons
Total Pages: 374
Release: 1975
Genre: Mathematics
ISBN:

Shows how Galileo, Newton, and Einstein tried to explain gravity. Discusses the concept of microgravity and NASA's research on gravity and microgravity.

Model-Based Clustering and Classification for Data Science

Model-Based Clustering and Classification for Data Science
Author: Charles Bouveyron
Publisher: Cambridge University Press
Total Pages: 447
Release: 2019-07-25
Genre: Mathematics
ISBN: 1108640591

Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.

Text Mining with R

Text Mining with R
Author: Julia Silge
Publisher: "O'Reilly Media, Inc."
Total Pages: 193
Release: 2017-06-12
Genre: Computers
ISBN: 1491981628

Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.

Handbook of Cluster Analysis

Handbook of Cluster Analysis
Author: Christian Hennig
Publisher: CRC Press
Total Pages: 753
Release: 2015-12-16
Genre: Business & Economics
ISBN: 1466551895

Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools.The

Clusters, Orders, and Trees: Methods and Applications

Clusters, Orders, and Trees: Methods and Applications
Author: Fuad Aleskerov
Publisher: Springer
Total Pages: 404
Release: 2014-06-11
Genre: Mathematics
ISBN: 1493907425

The volume is dedicated to Boris Mirkin on the occasion of his 70th birthday. In addition to his startling PhD results in abstract automata theory, Mirkin’s ground breaking contributions in various fields of decision making and data analysis have marked the fourth quarter of the 20th century and beyond. Mirkin has done pioneering work in group choice, clustering, data mining and knowledge discovery aimed at finding and describing non-trivial or hidden structures—first of all, clusters, orderings and hierarchies—in multivariate and/or network data. This volume contains a collection of papers reflecting recent developments rooted in Mirkin’s fundamental contribution to the state-of-the-art in group choice, ordering, clustering, data mining and knowledge discovery. Researchers, students and software engineers will benefit from new knowledge discovery techniques and application directions.

Topics in Modelling of Clustered Data

Topics in Modelling of Clustered Data
Author: Marc Aerts
Publisher: CRC Press
Total Pages: 340
Release: 2002-05-29
Genre: Mathematics
ISBN: 1420035886

Many methods for analyzing clustered data exist, all with advantages and limitations in particular applications. Compiled from the contributions of leading specialists in the field, Topics in Modelling of Clustered Data describes the tools and techniques for modelling the clustered data often encountered in medical, biological, environmental, and s

Practical Guide to Cluster Analysis in R

Practical Guide to Cluster Analysis in R
Author: Alboukadel Kassambara
Publisher: STHDA
Total Pages: 168
Release: 2017-08-23
Genre: Education
ISBN: 1542462703

Although there are several good books on unsupervised machine learning, we felt that many of them are too theoretical. This book provides practical guide to cluster analysis, elegant visualization and interpretation. It contains 5 parts. Part I provides a quick introduction to R and presents required R packages, as well as, data formats and dissimilarity measures for cluster analysis and visualization. Part II covers partitioning clustering methods, which subdivide the data sets into a set of k groups, where k is the number of groups pre-specified by the analyst. Partitioning clustering approaches include: K-means, K-Medoids (PAM) and CLARA algorithms. In Part III, we consider hierarchical clustering method, which is an alternative approach to partitioning clustering. The result of hierarchical clustering is a tree-based representation of the objects called dendrogram. In this part, we describe how to compute, visualize, interpret and compare dendrograms. Part IV describes clustering validation and evaluation strategies, which consists of measuring the goodness of clustering results. Among the chapters covered here, there are: Assessing clustering tendency, Determining the optimal number of clusters, Cluster validation statistics, Choosing the best clustering algorithms and Computing p-value for hierarchical clustering. Part V presents advanced clustering methods, including: Hierarchical k-means clustering, Fuzzy clustering, Model-based clustering and Density-based clustering.

Cluster Analysis and Data Mining

Cluster Analysis and Data Mining
Author: Ronald S. King
Publisher: Mercury Learning and Information
Total Pages: 363
Release: 2015-05-12
Genre: Computers
ISBN: 1942270135

Cluster analysis is used in data mining and is a common technique for statistical data analysis used in many fields of study, such as the medical & life sciences, behavioral & social sciences, engineering, and in computer science. Designed for training industry professionals or for a course on clustering and classification, it can also be used as a companion text for applied statistics. No previous experience in clustering or data mining is assumed. Informal algorithms for clustering data and interpreting results are emphasized. In order to evaluate the results of clustering and to explore data, graphical methods and data structures are used for representing data. Throughout the text, examples and references are provided, in order to enable the material to be comprehensible for a diverse audience. A companion disc includes numerous appendices with programs, data, charts, solutions, etc. eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected]. FEATURES *Places emphasis on illustrating the underlying logic in making decisions during the cluster analysis *Discusses the related applications of statistic, e.g., Ward’s method (ANOVA), JAN (regression analysis & correlational analysis), cluster validation (hypothesis testing, goodness-of-fit, Monte Carlo simulation, etc.) *Contains separate chapters on JAN and the clustering of categorical data *Includes a companion disc with solutions to exercises, programs, data sets, charts, etc.