Clinical Data Mining In An Allied Health Organisation
Download Clinical Data Mining In An Allied Health Organisation full books in PDF, epub, and Kindle. Read online free Clinical Data Mining In An Allied Health Organisation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Roslyn Giles |
Publisher | : Sydney University Press |
Total Pages | : 276 |
Release | : 2018-08-30 |
Genre | : Medical |
ISBN | : 1743320736 |
Clinical Data Mining in an Allied Health Organisation: A Real World Experience shows how data-mining methodology can be used to promote quality management and research, reflecting on the ways in which this approach transforms practice by encouraging practitioner and organisational learning, client-focused service improvement and professional role satisfaction.
Author | : Management Association, Information Resources |
Publisher | : IGI Global |
Total Pages | : 2071 |
Release | : 2019-12-06 |
Genre | : Medical |
ISBN | : 1799812057 |
Advancements in data science have created opportunities to sort, manage, and analyze large amounts of data more effectively and efficiently. Applying these new technologies to the healthcare industry, which has vast quantities of patient and medical data and is increasingly becoming more data-reliant, is crucial for refining medical practices and patient care. Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications is a vital reference source that examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations. Highlighting a range of topics such as data security and privacy, health informatics, and predictive analytics, this multi-volume book is ideally designed for doctors, hospital administrators, nurses, medical professionals, IT specialists, computer engineers, information technologists, biomedical engineers, data-processing specialists, healthcare practitioners, academicians, and researchers interested in current research on the connections between data analytics in the field of medicine.
Author | : Irwin Epstein |
Publisher | : Routledge |
Total Pages | : 209 |
Release | : 2001 |
Genre | : Business & Economics |
ISBN | : 0789017083 |
This groundbreaking book will show you how to use existing patient records to do original research so you can custom-tailor programs to fit the specific needs of your department. Clinical Data-Mining in Practice-Based Research draws from the experiences of members of the Mount Sinai Department of Social Work staff. By analyzing case data, these professionals were able to identify biopsychosocial factors that affected social-health outcomes, and therefore to assess, maintain, and improve the quality of social work services. The detailed discussions in this book will help you apply these techniques toward improving your own service.
Author | : Irwin Epstein |
Publisher | : Oxford University Press |
Total Pages | : 241 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 019533552X |
Clinical Data-Mining (CDM) involves the conceptualization, extraction, analysis, and interpretation of available clinical data for practice knowledge-building, clinical decision-making and practitioner reflection. Depending upon the type of data mined, CDM can be qualitative or quantitative; it is generally retrospective, but may be meaningfully combined with original data collection.Any research method that relies on the contents of case records or information systems data inevitably has limitations, but with proper safeguards these can be minimized. Among CDM's strengths however, are that it is unobtrusive, inexpensive, presents little risk to research subjects, and is ethically compatible with practitioner value commitments. When conducted by practitioners, CDM yields conceptual as well as data-driven insight into their own practice- and program-generated questions.This pocket guide, from a seasoned practice-based researcher, covers all the basics of conducting practitioner-initiated CDM studies or CDM doctoral dissertations, drawing extensively on published CDM studies and completed CDM dissertations from multiple social work settings in the United States, Australia, Israel, Hong Kong and the United Kingdom. In addition, it describes consulting principles for researchers interested in forging collaborative university-agency CDM partnerships, making it a practical tool for novice practitioner-researchers and veteran academic-researchers alike.As such, this book is an exceptional guide both for professionals conducting practice-based research as well as for social work faculty seeking an evidence-informed approach to practice-research integration.
Author | : Arvind Kumar Bansal |
Publisher | : CRC Press |
Total Pages | : 784 |
Release | : 2020-01-08 |
Genre | : Medical |
ISBN | : 1000761592 |
This class-tested textbook is designed for a semester-long graduate or senior undergraduate course on Computational Health Informatics. The focus of the book is on computational techniques that are widely used in health data analysis and health informatics and it integrates computer science and clinical perspectives. This book prepares computer science students for careers in computational health informatics and medical data analysis. Features Integrates computer science and clinical perspectives Describes various statistical and artificial intelligence techniques, including machine learning techniques such as clustering of temporal data, regression analysis, neural networks, HMM, decision trees, SVM, and data mining, all of which are techniques used widely used in health-data analysis Describes computational techniques such as multidimensional and multimedia data representation and retrieval, ontology, patient-data deidentification, temporal data analysis, heterogeneous databases, medical image analysis and transmission, biosignal analysis, pervasive healthcare, automated text-analysis, health-vocabulary knowledgebases and medical information-exchange Includes bioinformatics and pharmacokinetics techniques and their applications to vaccine and drug development
Author | : Information Resources Management Association |
Publisher | : Medical Information Science Reference |
Total Pages | : 2250 |
Release | : 2019-11-18 |
Genre | : |
ISBN | : 9781799812043 |
""This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations"--
Author | : Institute of Medicine |
Publisher | : National Academies Press |
Total Pages | : 267 |
Release | : 2011-07-20 |
Genre | : Medical |
ISBN | : 0309164257 |
Healthcare decision makers in search of reliable information that compares health interventions increasingly turn to systematic reviews for the best summary of the evidence. Systematic reviews identify, select, assess, and synthesize the findings of similar but separate studies, and can help clarify what is known and not known about the potential benefits and harms of drugs, devices, and other healthcare services. Systematic reviews can be helpful for clinicians who want to integrate research findings into their daily practices, for patients to make well-informed choices about their own care, for professional medical societies and other organizations that develop clinical practice guidelines. Too often systematic reviews are of uncertain or poor quality. There are no universally accepted standards for developing systematic reviews leading to variability in how conflicts of interest and biases are handled, how evidence is appraised, and the overall scientific rigor of the process. In Finding What Works in Health Care the Institute of Medicine (IOM) recommends 21 standards for developing high-quality systematic reviews of comparative effectiveness research. The standards address the entire systematic review process from the initial steps of formulating the topic and building the review team to producing a detailed final report that synthesizes what the evidence shows and where knowledge gaps remain. Finding What Works in Health Care also proposes a framework for improving the quality of the science underpinning systematic reviews. This book will serve as a vital resource for both sponsors and producers of systematic reviews of comparative effectiveness research.
Author | : MIT Critical Data |
Publisher | : Springer |
Total Pages | : 435 |
Release | : 2016-09-09 |
Genre | : Medical |
ISBN | : 3319437429 |
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Author | : Karen Backus |
Publisher | : Gale Cengage |
Total Pages | : 1216 |
Release | : 1991-11 |
Genre | : Medical |
ISBN | : 9780810369108 |
Author | : Pieter Kubben |
Publisher | : Springer |
Total Pages | : 219 |
Release | : 2018-12-21 |
Genre | : Medical |
ISBN | : 3319997130 |
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.