Clifford Numbers And Spinors
Download Clifford Numbers And Spinors full books in PDF, epub, and Kindle. Read online free Clifford Numbers And Spinors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Marcel Riesz |
Publisher | : Springer Science & Business Media |
Total Pages | : 252 |
Release | : 2013-11-11 |
Genre | : Science |
ISBN | : 9401710473 |
Marcellliesz's lectures delivered on October 1957 -January 1958 at the Uni versity of Maryland, College Park, have been previously published only infor mally as a manuscript entitled CLIFFORD NUMBERS AND SPINORS (Chap ters I - IV). As the title says, the lecture notes consist of four Chapters I, II, III and IV. However, in the preface of the lecture notes lliesz refers to Chapters V and VI which he could not finish. Chapter VI is mentioned on pages 1, 3, 16, 38 and 156, which makes it plausible that lliesz was well aware of what he was going to include in the final missing chapters. The present book makes lliesz's classic lecture notes generally available to a wider audience and tries somewhat to fill in one of the last missing chapters. This book also tries to evaluate lliesz's influence on the present research on Clifford algebras and draws special attention to lliesz's contributions in this field - often misunderstood.
Author | : Pertti Lounesto |
Publisher | : Cambridge University Press |
Total Pages | : 352 |
Release | : 2001-05-03 |
Genre | : Mathematics |
ISBN | : 0521005515 |
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.
Author | : Jayme Vaz Jr. |
Publisher | : Oxford University Press |
Total Pages | : 257 |
Release | : 2016 |
Genre | : Mathematics |
ISBN | : 0198782926 |
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.
Author | : J.S.R. Chisholm |
Publisher | : Springer Science & Business Media |
Total Pages | : 589 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9400947283 |
William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.
Author | : David Hestenes |
Publisher | : Springer Science & Business Media |
Total Pages | : 340 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 9789027725615 |
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Author | : Élie Cartan |
Publisher | : Courier Corporation |
Total Pages | : 193 |
Release | : 2012-04-30 |
Genre | : Mathematics |
ISBN | : 0486137325 |
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.
Author | : Rafal Ablamowicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 428 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 9401584222 |
This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.
Author | : Bernard Jancewicz |
Publisher | : World Scientific |
Total Pages | : 345 |
Release | : 1989-01-01 |
Genre | : Science |
ISBN | : 9814513695 |
Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space.Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources. Because of the elementary level of presentation, this book can be treated as an introductory course to electromagnetic theory. Numerous illustrations are helpful in visualizing the exposition. Furthermore, each chapter ends with a list of problems which amplify or further illustrate the fundamental arguments.
Author | : Claude Chevalley |
Publisher | : Springer Science & Business Media |
Total Pages | : 232 |
Release | : 1996-12-13 |
Genre | : Mathematics |
ISBN | : 9783540570639 |
In 1982, Claude Chevalley expressed three specific wishes with respect to the publication of his Works. First, he stated very clearly that such a publication should include his non technical papers. His reasons for that were two-fold. One reason was his life long commitment to epistemology and to politics, which made him strongly opposed to the view otherwise currently held that mathematics involves only half of a man. As he wrote to G. C. Rota on November 29th, 1982: "An important number of papers published by me are not of a mathematical nature. Some have epistemological features which might explain their presence in an edition of collected papers of a mathematician, but quite a number of them are concerned with theoretical politics ( . . . ) they reflect an aspect of myself the omission of which would, I think, give a wrong idea of my lines of thinking". On the other hand, Chevalley thought that the Collected Works of a mathematician ought to be read not only by other mathematicians, but also by historians of science.
Author | : Garret Sobczyk |
Publisher | : |
Total Pages | : 188 |
Release | : 2019-11-07 |
Genre | : |
ISBN | : 9781704596624 |
Geometric algebra has been presented in many different guises since its invention by William Kingdon Clifford shortly before his death in 1879. Our guiding principle is that it should be fully integrated into the foundations of mathematics, and in this regard nothing is more fundamental than the concept of number itself. In this book we fully integrate the ideas of geometric algebra directly into the fabric of matrix linear algebra. A geometric matrix is a real or complex matrix which is identified with a unique geometric number. The matrix product of two geometric matrices is just the product of the corresponding geometric numbers. Any equation can be either interpreted as a matrix equation or an equation in geometric algebra, thus fully unifying the two languages. The first 6 chapters provide an introduction to geometric algebra, and the classification of all such algebras. Exercises are provided. The last 3 chapters explore more advanced topics in the application of geometric algebras to Pauli and Dirac spinors, special relativity, Maxwell's equations, quaternions, split quaternions, and group manifolds. They are included to highlight the great variety of topics that are imbued with new geometric insight when expressed in geometric algebra. The usefulness of these later chapters will depend on the background and previous knowledge of the reader.Matrix Gateway to Geometric Algebra will be of interest to undergraduate and graduate students in mathematics, physics and the engineering sciences, who are looking for a unified treatment of geometric ideas arising in these areas at all levels. It should also be of interest to specialists in linear and multilinear algebra, and to mathematical historians interested in the development of geometric number systems.