Classical Mirror Symmetry
Download Classical Mirror Symmetry full books in PDF, epub, and Kindle. Read online free Classical Mirror Symmetry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Masao Jinzenji |
Publisher | : Springer |
Total Pages | : 147 |
Release | : 2018-04-18 |
Genre | : Science |
ISBN | : 9811300569 |
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.
Author | : Kentaro Hori |
Publisher | : American Mathematical Soc. |
Total Pages | : 954 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821829556 |
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Author | : David A. Cox |
Publisher | : American Mathematical Soc. |
Total Pages | : 498 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 082182127X |
Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.
Author | : Kodŭng Kwahagwŏn (Korea). International Conference |
Publisher | : World Scientific |
Total Pages | : 940 |
Release | : 2001 |
Genre | : Mirror symmetry |
ISBN | : 9789812799821 |
In 1993, M. Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi–Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A∞-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger–Yau–Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics. In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov–Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A∞-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya–Oh–Ohta–Ono which takes an important step towards a rigorous construction of the A∞-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov–Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.
Author | : Mark Gross |
Publisher | : American Mathematical Soc. |
Total Pages | : 338 |
Release | : 2011-01-20 |
Genre | : Mathematics |
ISBN | : 0821852329 |
Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.
Author | : |
Publisher | : American Mathematical Soc. |
Total Pages | : 698 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0821838482 |
Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.
Author | : Ian Stewart |
Publisher | : OUP Oxford |
Total Pages | : 161 |
Release | : 2013-05-30 |
Genre | : Mathematics |
ISBN | : 0191652741 |
In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Author | : Shing-Tung Yau |
Publisher | : American Mathematical Soc. |
Total Pages | : 460 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : 082182743X |
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Author | : Felipe Cucker |
Publisher | : Cambridge University Press |
Total Pages | : 427 |
Release | : 2013-04-25 |
Genre | : Art |
ISBN | : 0521429633 |
This fascinating book will interest anyone wanting to learn more about the relationship between mathematics and the arts.
Author | : Dusa McDuff |
Publisher | : American Mathematical Soc. |
Total Pages | : 744 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 0821887467 |
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.