Classical Charged Particles

Classical Charged Particles
Author: F. Rohrlich
Publisher: World Scientific
Total Pages: 323
Release: 2007
Genre: Science
ISBN: 9812700048

Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincar‚, and Dirac, it is usually regarded as a ?lost cause?. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.

Classical Charged Particles

Classical Charged Particles
Author: Fritz Rohrlich
Publisher: CRC Press
Total Pages: 263
Release: 2020-01-20
Genre: Science
ISBN: 0429709064

Widely-discussed in the theory of classical point charges are the difficulties of divergent self-energy, self-accelerating solutions, and pre-acceleration. This book explains the theory in the context of quantum electrodynamics, the neutral particle limit, and coherence with neighboring theories.

Electrodynamics and Classical Theory of Fields and Particles

Electrodynamics and Classical Theory of Fields and Particles
Author: A. O. Barut
Publisher: Courier Corporation
Total Pages: 258
Release: 2012-04-30
Genre: Science
ISBN: 0486158713

Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.

Dynamics of Charged Particles and their Radiation Field

Dynamics of Charged Particles and their Radiation Field
Author: Herbert Spohn
Publisher: Cambridge University Press
Total Pages: 378
Release: 2004-08-02
Genre: Science
ISBN: 1139454455

This book provides a self-contained and systematic introduction to classical electron theory and its quantization, non-relativistic quantum electrodynamics. The first half of the book covers the classical theory. It discusses the well-defined Abraham model of extended charges in interaction with the electromagnetic field, and gives a study of the effective dynamics of charges under the condition that, on the scale given by the size of the charge distribution, they are far apart and the applied potentials vary slowly. The second half covers the quantum theory, leading to a coherent presentation of non-relativistic quantum electrodynamics. Topics discussed include non-perturbative properties of the basic Hamiltonian, the structure of resonances, the relaxation to the ground state through emission of photons, the non-perturbative derivation of the g-factor of the electron and the stability of matter.

Charged Particle Traps

Charged Particle Traps
Author: Fouad G. Major
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2005-11-10
Genre: Science
ISBN: 3540265767

Over the last quarter of this century, revolutionary advances have been made both in kind and in precision in the application of particle traps to the study of thephysics of charged particles, leading to intensi?ed interest in, and wide proliferation of, this topic. This book is intended as a timely addition to the literature, providing a systematic uni?ed treatment of the subject, from the point of view of the application of these devices to fundamental atomic and particle physics. Thetechniqueofusingelectromagnetic?eldstocon?neandisolateatomic particles in vacuo, rather than by material walls of a container, was initially conceivedbyW.Paulintheformofa3Dversionoftheoriginalrfquadrupole mass ?lter, for which he shared the 1989 Nobel Prize in physics [1], whereas H.G. Dehmelt who also shared the 1989 Nobel Prize [2] saw these devices (including the Penning trap) as a way of isolating electrons and ions, for the purposes of high resolution spectroscopy. These two broad areas of appli- tion have developed more or less independently, each attaining a remarkable degree of sophistication and generating widespread interest and experimental activity.

The Penetration of Charged Particles Through Matter (1912 - 1954)

The Penetration of Charged Particles Through Matter (1912 - 1954)
Author: J. Thorsen
Publisher: Elsevier
Total Pages: 859
Release: 2013-10-22
Genre: Science
ISBN: 0080871062

Bohr's first acquaintance with the subject of penetration of charged particles through matter was as early as in 1912 when he treated the absorption of &agr; and &bgr; rays on the basis of Rutherford's atomic model. From then on he kept a lifelong interest in the subject, often using it as an important test of the methods of atomic mechanics. His last paper on penetration, written together with Jens Lindhard, dealt with electron capture and loss and was published in 1954.Part I of this volume follows Bohr's work on penetration theory based on classical mechanics. Part II deals with the general theory of penetration, taking quantum-mechanical considerations into account.

Quantum Statistics of Charged Particle Systems

Quantum Statistics of Charged Particle Systems
Author: W.D. Kraeft
Publisher: Springer Science & Business Media
Total Pages: 306
Release: 2012-12-06
Genre: Science
ISBN: 146132159X

The year 1985 represents a special anniversary for people dealing with Ooulomb systems. 200 years ago, in 1785, Oharles Auguste de Ooulomb (1736-1806) found "Ooulomb's law" for the interaction force between charged particles. The authors want to dedicate this book to the honour of the great pioneer of electrophysics. Recent statistical mechanics is mainly restricted to systems of neutral particles. Except for a few monographs and survey articles (see, e. g., IOHIMARU, 1973, 1982; KUDRIN, 1974; KLIMONTOVIOH, 1975; EBELING, KRAEFT and KREMP, 1976, 1979; KALMAN and CARINI, 1978; BAUS and HANSEN, 1980; GILL, 1981, VELO and WIGHT MAN, 1981; MATSUBARA, 1982) the extended material on charged particle systems, which is now available thanks to the efforts of many workers in statistical mechanics, is widely dispersed in many original articles. It is the aim of this monograph to represent at least some part of the known results on charged particle systems from a unified point of view. Here the method of Green's functions turns out to be a powerful method especially to overcome the difficulties connected with the statistical physics of charged particle systems; some of them are . mentioned in the introduction. Here we can point, e.g., to the appearance of bound states in a medium and their role as new entities.

Classical And Quantum Dissipative Systems (Second Edition)

Classical And Quantum Dissipative Systems (Second Edition)
Author: Mohsen Razavy
Publisher: World Scientific
Total Pages: 593
Release: 2017-02-27
Genre: Science
ISBN: 9813207930

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.