Classical And Quantum Information
Download Classical And Quantum Information full books in PDF, epub, and Kindle. Read online free Classical And Quantum Information ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dan C. Marinescu |
Publisher | : Academic Press |
Total Pages | : 745 |
Release | : 2011-01-07 |
Genre | : Mathematics |
ISBN | : 0123838754 |
A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. - Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes - Covers both classical and quantum information theory and error correcting codes - The last chapter of the book covers physical implementation of quantum information processing devices - Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information
Author | : Mark Wilde |
Publisher | : Cambridge University Press |
Total Pages | : 673 |
Release | : 2013-04-18 |
Genre | : Computers |
ISBN | : 1107034256 |
A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.
Author | : Emmanuel Desurvire |
Publisher | : Cambridge University Press |
Total Pages | : 714 |
Release | : 2009-02-19 |
Genre | : Computers |
ISBN | : 0521881714 |
This complete overview of classical and quantum information theory employs an informal yet accurate approach, for students, researchers and practitioners.
Author | : Alexei Yu. Kitaev |
Publisher | : American Mathematical Soc. |
Total Pages | : 274 |
Release | : 2002 |
Genre | : Computers |
ISBN | : 0821832298 |
An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.
Author | : Christopher G. Timpson |
Publisher | : Oxford Philosophical Monograph |
Total Pages | : 308 |
Release | : 2013-04-25 |
Genre | : Computers |
ISBN | : 0199296464 |
Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
Author | : János A. Bergou |
Publisher | : Springer Nature |
Total Pages | : 310 |
Release | : 2021-09-14 |
Genre | : Computers |
ISBN | : 3030754367 |
This new edition of a well-received textbook provides a concise introduction to both the theoretical and experimental aspects of quantum information at the graduate level. While the previous edition focused on theory, the book now incorporates discussions of experimental platforms. Several chapters on experimental implementations of quantum information protocols have been added: implementations using neutral atoms, trapped ions, optics, and solidstate systems are each presented in its own chapter. Previous chapters on entanglement, quantum measurements, quantum dynamics, quantum cryptography, and quantum algorithms have been thoroughly updated, and new additions include chapters on the stabilizer formalism and the Gottesman-Knill theorem as well as aspects of classical and quantum information theory. To facilitate learning, each chapter starts with a clear motivation to the topic and closes with exercises and a recommended reading list. Quantum Information Processing: Theory and Implementation will be essential to graduate students studying quantum information as well as and researchers in other areas of physics who wish to gain knowledge in the field.
Author | : Susan Loepp |
Publisher | : Cambridge University Press |
Total Pages | : 269 |
Release | : 2006-07-10 |
Genre | : Computers |
ISBN | : 1139457667 |
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices.
Author | : Ivan Djordjevic |
Publisher | : Academic Press |
Total Pages | : 597 |
Release | : 2012-04-16 |
Genre | : Computers |
ISBN | : 0123854911 |
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Author | : John Watrous |
Publisher | : |
Total Pages | : 599 |
Release | : 2018-04-26 |
Genre | : Computers |
ISBN | : 1107180562 |
Formal development of the mathematical theory of quantum information with clear proofs and exercises. For graduate students and researchers.
Author | : S.L. Braunstein |
Publisher | : Springer Science & Business Media |
Total Pages | : 419 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401512582 |
Quantum information may sound like science fiction but is, in fact, an active and extremely promising area of research, with a big dream: to build a quantum computer capable of solving problems that a classical computer could not even begin to handle. Research in quantum information science is now at an advanced enough stage for this dream to be credible and well-worth pursuing. It is, at the same time, too early to predict how quantum computers will be built, and what potential technologies will eventually strike gold in their ability to manipulate and process quantum information. One direction that has reaped many successes in quantum information processing relies on continuous variables. This area is bustling with theoretical and experimental achievements, from continuous-variable teleportation, to in-principle demonstrations of universal computation and efficient error correction. Now the time has come to compile some of the major results into one volume. In this book the leading researchers of the field present up-to-date developments of continuous-variable quantum information. This book is organized to suit many reader levels with introductions to every topic and in-depth discussions of theoretical and experimental results.