Chemistry for Electronic Materials

Chemistry for Electronic Materials
Author: K.F. Jensen
Publisher: Elsevier
Total Pages: 215
Release: 1993-03-09
Genre: Science
ISBN: 0444596909

The chemical aspects of materials processing used for electronic applications, e.g. Si, III-V compounds, superconductors, metallization materials, are covered in this volume. Significant recent advances have occurred in the development of new volatile precursors for the fabrication of III-V semiconductor and metal [Cu, W] films by OMCVD. Some fundamentally new and wide-ranging applications have been introduced in recent times. Experimental and modeling studies regarding deposition kinetics, operating conditions and transport as well as properties of films produced by PVD, CVD and PECVD are discussed. The thirty papers in this volume report on many other significant topics also. Research workers involved in these aspects of materials technology may find here some new perspectives with which to augment their projects.

Organic Electronic Materials

Organic Electronic Materials
Author: R. Farchioni
Publisher: Springer Science & Business Media
Total Pages: 457
Release: 2013-11-21
Genre: Technology & Engineering
ISBN: 3642564259

This book brings together selected contributions both on the fundamental information on the physics and chemistry of these materials, new physical ideas and decisive experiments. It constitutes both an insightful treatise and a handy reference for specialists and graduate students working in solid state physics and chemistry, material science and related fields.

An Introduction to Electronic Materials for Engineers

An Introduction to Electronic Materials for Engineers
Author: Wei Gao
Publisher: World Scientific
Total Pages: 563
Release: 2011
Genre: Technology & Engineering
ISBN: 9814293695

Presents an overview of various materials, such as conducting materials, semiconductors, magnetic materials, optical materials, dielectric materials, superconductors, thermoelectric materials and ionic materials. This title includes chapters on thin film electronic materials, organic electronic materials and nanostructured materials.

Electronic Materials

Electronic Materials
Author: Yuriy M. Poplavko
Publisher: Elsevier
Total Pages: 710
Release: 2018-11-23
Genre: Science
ISBN: 0128152567

Mechanical and thermal properties are reviewed and electrical and magnetic properties are emphasized. Basics of symmetry and internal structure of crystals and the main properties of metals, dielectrics, semiconductors, and magnetic materials are discussed. The theory and modern experimental data are presented, as well as the specifications of materials that are necessary for practical application in electronics. The modern state of research in nanophysics of metals, magnetic materials, dielectrics and semiconductors is taken into account, with particular attention to the influence of structure on the physical properties of nano-materials. The book uses simplified mathematical treatment of theories, while emphasis is placed on the basic concepts of physical phenomena in electronic materials. Most chapters are devoted to the advanced scientific and technological problems of electronic materials; in addition, some new insights into theoretical facts relevant to technical devices are presented. Electronic Materials is an essential reference for newcomers to the field of electronics, providing a fundamental understanding of important basic and advanced concepts in electronic materials science. Provides important overview of the fundamentals of electronic materials properties significant for device applications along with advanced and applied concepts essential to those working in the field of electronics Takes a simplified and mathematical approach to theories essential to the understanding of electronic materials and summarizes important takeaways at the end of each chapter Interweaves modern experimental data and research in topics such as nanophysics, nanomaterials and dielectrics

Electronic Materials

Electronic Materials
Author: L.S. Miller
Publisher: Springer Science & Business Media
Total Pages: 549
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461538181

Electronic materials are a dominant factor in many areas of modern technology. The need to understand'them is paramount; this book addresses that need. The main aim of this volume is to provide a broad unified view of electronic materials, including key aspects of their science and technology and also, in many cases, their commercial implications. It was considered important that much of the contents of such an overview should be intelligible by a broad audience of graduates and industrial scientists, and relevant to advanced undergraduate studies. It should also be up to date and even looking forward to the future. Although more extensive, and written specifically as a text, the resulting book has much in common with a short course of the same name given at Coventry Polytechnic. The interpretation of the term "electronic materials" used in this volume is a very broad one, in line with the initial aim. The principal restriction is that, with one or two minor exceptions relating to aspects of device processing, for example, the materials dealt with are all active materials. Materials such as simple insulators or simple conductors, playing only a passive role, are not singled out for consider ation. Active materials might be defined as those involved in the processing of signals in a way that depends crucially on some specific property of those materials, and the immediate question then concerns the types of signals that might be considered.

The Materials Science of Semiconductors

The Materials Science of Semiconductors
Author: Angus Rockett
Publisher: Springer Science & Business Media
Total Pages: 629
Release: 2007-11-20
Genre: Technology & Engineering
ISBN: 0387686509

This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.

Electronic Materials Science

Electronic Materials Science
Author: Eugene A. Irene
Publisher: John Wiley & Sons
Total Pages: 400
Release: 2005-03-25
Genre: Science
ISBN: 9780471711636

A thorough introduction to fundamental principles andapplications From its beginnings in metallurgy and ceramics, materials sciencenow encompasses such high- tech fields as microelectronics,polymers, biomaterials, and nanotechnology. Electronic MaterialsScience presents the fundamentals of the subject in a detailedfashion for a multidisciplinary audience. Offering a higher-leveltreatment than an undergraduate textbook provides, this textbenefits students and practitioners not only in electronics andoptical materials science, but also in additional cutting-edgefields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physicswill appreciate the text's sophisticated presentation of today'smaterials science. Instructive derivations of important formulae,usually omitted in an introductory text, are included here. Thisfeature offers a useful glimpse into the foundations of how thediscipline understands such topics as defects, phase equilibria,and mechanical properties. Additionally, concepts such asreciprocal space, electron energy band theory, and thermodynamicsenter the discussion earlier and in a more robust fashion than inother texts. Electronic Materials Science also features: * An orientation towards industry and academia drawn from theauthor's experience in both arenas * Information on applications in semiconductors, optoelectronics,photocells, and nanoelectronics * Problem sets and important references throughout * Flexibility for various pedagogical needs Treating the subject with more depth than any other introductorytext, Electronic Materials Science prepares graduate andupper-level undergraduate students for advanced topics in thediscipline and gives scientists in associated disciplines a clearreview of the field and its leading technologies.

Theory of Charge Transport in Carbon Electronic Materials

Theory of Charge Transport in Carbon Electronic Materials
Author: Zhigang Shuai
Publisher: Springer Science & Business Media
Total Pages: 96
Release: 2012-01-05
Genre: Science
ISBN: 3642250769

Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.

Introduction to the Physics and Chemistry of Materials

Introduction to the Physics and Chemistry of Materials
Author: Robert J. Naumann
Publisher: CRC Press
Total Pages: 562
Release: 2008-12-22
Genre: Science
ISBN: 1420061348

Discusses the Structure and Properties of Materials and How These Materials Are Used in Diverse ApplicationsBuilding on undergraduate students' backgrounds in mathematics, science, and engineering, Introduction to the Physics and Chemistry of Materials provides the foundation needed for more advanced work in materials science. Ideal for a two-semes

Electrical Characterization of Organic Electronic Materials and Devices

Electrical Characterization of Organic Electronic Materials and Devices
Author: Professor Peter Stallinga
Publisher: John Wiley & Sons
Total Pages: 316
Release: 2009-10-08
Genre: Technology & Engineering
ISBN: 0470750170

Think like an electron Organic electronic materials have many applications and potential in low-cost electronics such as electronic barcodes and in light emitting devices, due to their easily tailored properties. While the chemical aspects and characterization have been widely studied, characterization of the electrical properties has been neglected, and classic textbook modeling has been applied. This is most striking in the analysis of thin-film transistors (TFTs) using thick “bulk” transistor (MOS-FET) descriptions. At first glance the TFTs appear to behave as regular MOS-FETs. However, upon closer examination it is clear that TFTs are unique and merit their own model. Understanding and interpreting measurements of organic devices, which are often seen as black-box measurements, is critical to developing better devices and this, therefore, has to be done with care. Electrical Characterization of Organic Electronic Materials and Devices Gives new insights into the electronic properties and measurement techniques for low-mobility electronic devices Characterizes the thin-film transistor using its own model Links the phenomena seen in different device structures and different measurement techniques Presents clearly both how to perform electrical measurements of organic and low-mobility materials and how to extract important information from these measurements Provides a much-needed theoretical foundation for organic electronics