Chemically Modified Metal Oxide Nanostructures Electrodes For Sensing And Energy Conversion
Download Chemically Modified Metal Oxide Nanostructures Electrodes For Sensing And Energy Conversion full books in PDF, epub, and Kindle. Read online free Chemically Modified Metal Oxide Nanostructures Electrodes For Sensing And Energy Conversion ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sami Elhag |
Publisher | : Linköping University Electronic Press |
Total Pages | : 89 |
Release | : 2017-02-02 |
Genre | : |
ISBN | : 9176855902 |
The goal of this thesis is the development of scalable, low cost synthesis of metal oxide nanostructures based electrodes and to correlate the chemical modifications with their energy conversion performance. Methods in energy conversion in this thesis have focused on two aspects; a potentiometric chemical sensor was used to determine the analytical concentration of some components of the analyte solution such as dopamine, glucose and glutamate molecules. The second aspect is to fabricate a photo-electrochemical (PEC) cell. The biocompatibility, excellent electro-catalytic activities and fast electron transfer kinetics accompanied with a high surface area to volume ratio; are properties of some metal oxide nanostructures that of a potential for their use in energy conversion. Furthermore, metal oxide nanostructures based electrode can effectively be improved by the physical or a chemical modification of electrode surface. Among these metal oxide nanostructures are cobalt oxide (Co3O4), zinc oxide (ZnO), and bismuth-zincvanadate (BiZn2VO6) have all been studied in this thesis. Metal oxide nanostructures based electrodes are fabricated on gold-coated glass substrate by low temperature (< 100 0C) wet chemicalapproach. X-ray diffraction, x-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the electrodes while ultraviolet-visible absorption and photoluminescence were used to investigate the optical properties of the nanostructures. The resultant modified electrodes were tested for their performance as chemical sensors and for their efficiency in PEC activities. Efficient chemically modified electrodes were demonstrated through doping with organic additives like anionic, nonionic or cationic surfactants. The organic additives are showing a crucial role in the growth process of metal oxide nanocrystals and hence can beused to control the morphology. These organic additives act also as impurities that would significantly change the conductivity of the electrodes. However, no organic compounds dependence was observed to modify the crystallographic structure. The findings in this thesis indicate the importance of the use of controlled nanostructures morphology for developing efficient functional materials.
Author | : Onoyivwe Monday Ama |
Publisher | : Springer Nature |
Total Pages | : 205 |
Release | : 2020-04-07 |
Genre | : Technology & Engineering |
ISBN | : 3030433463 |
This book reports on the development of nanostructured metal-oxide-based electrode materials for use in water purification. The removal of organic pollutants and heavy metals from wastewater is a growing environmental and societal priority. This book thus focuses primarily on new techniques to modify the nanostructural properties of various solvent-electrolyte combinations to address these issues. Water treatment is becoming more and more challenging due to the ever increasing complexity of the pollutants present, requiring alternative and complementary approaches toward the removal of toxic chemicals, heavy metals and micro-organisms, to name a few. This contributed volume cuts across the fields of electrochemistry, water science, materials science, and nanotechnology, while presenting up-to-date experimental results on the properties and synthesis of metal-oxide electrode materials, as well as their application to areas such as biosensing and photochemical removal of organic wastewater pollutants. Featuring an introductory chapter on electrochemical cells, this book is well positioned to acquaint interdisciplinary researchers to the field, while providing topical coverage of the latest techniques and methodology. It is ideal for students and research professionals in water science, materials science, and chemical and civil engineering.
Author | : Oliver Diwald |
Publisher | : John Wiley & Sons |
Total Pages | : 903 |
Release | : 2021-09-14 |
Genre | : Technology & Engineering |
ISBN | : 1119436745 |
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Author | : Daniela Nunes |
Publisher | : Elsevier |
Total Pages | : 331 |
Release | : 2018-11-01 |
Genre | : Technology & Engineering |
ISBN | : 012811505X |
Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy
Author | : Pellegrino Musto |
Publisher | : Frontiers Media SA |
Total Pages | : 183 |
Release | : 2021-09-08 |
Genre | : Science |
ISBN | : 2889712664 |
Author | : A. Pandikumar |
Publisher | : Elsevier |
Total Pages | : 374 |
Release | : 2021-04-21 |
Genre | : Technology & Engineering |
ISBN | : 0128209399 |
Metal oxide nanomaterials exhibit interesting electrical and photochemical properties because of their size, stability, and high surface area that render them as great choices in fabricating alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of metal oxides with other materials lead to the improvement in electrical conductivity, stability, and electron transfer kinetics during the electrocatalytic reactions. These key factors result in greater sensitivity of the sensor materials towards the analyte molecules. This book reviews the electrochemical determination of a variety of toxic chemical contaminants using metal oxide-based nanocomposite materials. Ultrasensitive and selective detection of toxic chemical contaminants is important and demanding, especially for monitoring and controlling environmental pollution. In recent years, metal oxide-based nanocomposite materials have shown high potential in the electrochemical detection of heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare reagents. Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals comprehensively reviews this topic. In addition to the instrumental simplicity, the electrochemical methods show the improved sensor performance through the synergetic effect of metal oxide and other electroactive nanomaterial present in the nanocomposite. Thus, detailed information on the electrochemical sensing of toxic chemical contaminants using metal oxide-based nanomaterials are discussed. The recent progress in developing electrochemical sensors using metal oxide-based nanocomposite materials and perspectives on future opportunities in sensor research and development are addressed in the book. - Introduces the fundamentals of electrochemical sensors and fabrication of metal oxide sensors of toxic chemicals - Reviews binary, doped, metal oxide-metal, metal oxide-carbon, metal oxide-polymer, metal-boron nitride, metal oxide-clay, and metal oxide- MOF electrodes - Systematically addresses the fabrication, synthesis, performance, mechanisms, detection limits, sensitivity, advantages and limitations and future perspectives of a wide range of metal oxide-based electrochemical sensors
Author | : Sarat Kumar Swain |
Publisher | : Royal Society of Chemistry |
Total Pages | : 514 |
Release | : 2023-10-13 |
Genre | : Science |
ISBN | : 1837671850 |
Sensors are significantly relevant to many aspects of life. The advancements in nanotechnology-based sensing systems are giving rise to exciting developments in sensor applications. Recently, nanocomposites have become highly promising candidates for the designing of new chemical sensing and biosensing platforms. Graphene-based nanocomposites have been successfully employed in many sensing applications in view of their excellent physical properties including high surface area, electrical conductivity, flexibility and optical transparency. They provide remarkable advantages such as lower fabrication costs, improved biocompatibility, prominent sensitivity, stability and selectivity for effective real-world implementation. The aim of the book is to give an overview on the properties and novel applications of graphene-based nanocomposites as chemical and biosensors. Chapters highlight various biosensing applications such as diabetes monitoring, cancer cell detection, virus, bacteria, DNA, protein and amino acid sensing, as well as hormone and cholesterol detection. Moreover, chemical sensing applications like gas, alcohol, and food toxin sensing, heavy metal ion detection, and H2O2 sensing are also covered. The book is ideal for postgraduates, analytical chemists, biomedical scientists and researchers in both academic and industrial settings working on materials science, chemical science and nanotechnology.
Author | : Mahmood Aliofkhazraei |
Publisher | : CRC Press |
Total Pages | : 532 |
Release | : 2016-04-27 |
Genre | : Science |
ISBN | : 1466591242 |
An In-Depth Look at the Outstanding Properties of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supe
Author | : Sher Bahadar Khan |
Publisher | : BoD – Books on Demand |
Total Pages | : 170 |
Release | : 2020-03-25 |
Genre | : Technology & Engineering |
ISBN | : 1789851599 |
This book focuses on the applications of nanomaterials in the fabrication of gas sensors. It covers recent developments of different materials used to design gas sensors, such as conducting polymers, semiconductors, as well as layered and nanosized materials. The widespread applications of various gas sensors for the detection of toxic gases are also discussed. The book provides a concise but thorough coverage of nanomaterials applications and utilization in gas sensors. In addition, it overviews recent developments in and the fabrication of gas sensors and their attributes for a broad audience, including beginners, graduate students, and specialists in both academic and industrial sectors.
Author | : Gomaa A. M. Ali |
Publisher | : Springer Nature |
Total Pages | : 1769 |
Release | : |
Genre | : |
ISBN | : 3031471806 |