Chemical Processing With Lasers
Download Chemical Processing With Lasers full books in PDF, epub, and Kindle. Read online free Chemical Processing With Lasers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dieter Bäuerle |
Publisher | : Springer Science & Business Media |
Total Pages | : 846 |
Release | : 2011-09-02 |
Genre | : Science |
ISBN | : 3642176135 |
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Author | : Nikolay G. Basov |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2011-12-21 |
Genre | : Technology & Engineering |
ISBN | : 9783642709630 |
The rapid development of lasers in the past few decades has led to their application in almost every field of science and technology. The idea that it should be possible to convert the energy released in chemical reactions of chemical lasers directly into coherent radiation resulted in the advent in the 1960s. These first chemical lasers, however, consumed much more energy to initiate the reaction than they emitted. The search for more ef ficient chemical lasing led to the utilization of chain reactions. However, care had to be taken to maintain the appropriate pressure. In 1970, it was demonstrated that the operation of chemical lasers at atmospheric pressure was also feasible, making it easier and cheaper to construct them. One of the advantages of chemical lasers is the wide range of radia tion wavelengths emitted by them: 1.3 - 26 ~m. The vibrational frequen cies of many molecules fall within this range so that they may convenient ly be used for the operation of such lasers. Progress in the development of chemical lasers is intimately con nected with advances in related fields such as gas dynamics, chemical reaction kinetics, and research into the energy relaxation and transfer processes in molecular systems.
Author | : Dieter Bäuerle |
Publisher | : Springer Science & Business Media |
Total Pages | : 245 |
Release | : 1986-01-01 |
Genre | : Lasers |
ISBN | : 9783540171478 |
Author | : Dieter Bauerle |
Publisher | : |
Total Pages | : 256 |
Release | : 1986-12-01 |
Genre | : |
ISBN | : 9783662025062 |
Author | : J. Mazumder |
Publisher | : Springer Science & Business Media |
Total Pages | : 406 |
Release | : 2013-06-29 |
Genre | : Technology & Engineering |
ISBN | : 1489914307 |
In this monograph, the authors offer a comprehensive examination of the latest research on Laser Chemical Vapor Deposition (LCVD). Chapters explore the physics of LCVD as well as the principles of a wide range of related phenomena-including laser-matter interactions, heat transfer, fluid flow, chemical kinetics, and adsorption. With this reference, researchers will discover how to apply these principles to developing theories about various types of LCVD processes; gain greater insight into the basic mechanisms of LCVD; and obtain the ability to design and control an LCVD system.
Author | : Jeffrey I. Steinfeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 283 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1468438638 |
The possibility of initiating chemical reactions by high-intensity laser exci tation has captured the imagination of chemists and physicists as well as of industrial scientists and the scientifically informed public in general ever since the laser first became available. Initially, great hopes were held that laser-induced chemistry would revolutionize synthetic chemistry, making possible "bond-specific" or "mode-specific" reactions that were impos sible to achieve under thermal equilibrium conditions. Indeed, some of the early work in this area, typically employing high-power continuous-wave sources, was interpreted in just this way. With further investigation, however, a more conservative picture has emerged, with the laser taking its place as one of a number of available methods for initiation of high-energy chemical transformations. Unlike a number of these methods, such as flash photolysis, shock tubes, and electron-beam radiolysis, the laser is capable of a high degree of spatial and molecular localization of deposited energy, which in turn is reflected in such applications as isotope enrichment or localized surface treatments. The use of lasers to initiate chemical processes has led to the discovery of several distinctly new molecular phenomena, foremost among which is that of multiple-photon excitation and dissociation of polyatomic molecules. This research area has received the greatest attention thus far and forms the focus of the present volume.
Author | : John Ion |
Publisher | : Elsevier |
Total Pages | : 589 |
Release | : 2005-03-22 |
Genre | : Technology & Engineering |
ISBN | : 0080492800 |
The complete guide to understanding and using lasers in material processing!Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques
Author | : D. Bäuerle |
Publisher | : Springer Science & Business Media |
Total Pages | : 561 |
Release | : 2013-11-11 |
Genre | : Science |
ISBN | : 3642823815 |
Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.
Author | : A. Ben-Shaul |
Publisher | : Springer Science & Business Media |
Total Pages | : 511 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642678262 |
Lasers and chemical change is the study of radiation and molecules in dis equilibrium. The distinguishing feature of such systems is the extreme de parture from thermal equilibrium: the radiation is usually confined to a narrow frequency range, is well coll imated, and is far brighter than black body radiation; the chemical composition and also the distribution of mole cules over their different energy states are often markedly displaced from that expected at equilibrium. Such systems can be used as a source of laser radiation and, reversedly, lasers can rapidly and selectively displace mole cular systems from equilibrium. The subsequent evolution of the initially prepared state can then be monitored - again using lasers. One purpose of this book is to introduce the concepts required to d- cuss systems of radiation and molecules in disequilibrium. These include the physics of (laser) radiation and of radiation-matter interaction and molecular structure and spectroscopy. Excellent textbooks of these topics are available and our survey (in Chap. 3) is only intended to accent the es sential points, with special reference to atomic and molecular radiation physics. Considerably more attention is given to the topic of disequilibrium in chemical systems (Chap. 2). In particular we consider both inter- and intra molecular dynamics with special reference to energy requirements and energy disposal in chemical reactions and to what goes on in between - intramole cular energy migration.
Author | : Charles Bradley Moore |
Publisher | : |
Total Pages | : 416 |
Release | : 1974 |
Genre | : Lasers |
ISBN | : 9780125054010 |