Charge Distributions and Chemical Effects

Charge Distributions and Chemical Effects
Author: S. Fliszar
Publisher: Springer Science & Business Media
Total Pages: 210
Release: 2012-12-06
Genre: Science
ISBN: 1461255759

The energy of a molecule can be studied with the help of quantum theory, a satisfactory approach because it involves only basic and clearly identified physical concepts. In an entirely different approach, the molecular energy can be broken down into individual contributions reflecting chemical bonds plus a host of subsidiary "effects", like y-gauche, skew pentane, ring-strain, etc. , giving an overall picture in terms of topological characteristics. The latter approach can be successful, particularly if a sufficient number of particular topological situations have been parametrized (which is an empir ical way of "understanding" chemistry), but also contains the seed for difficulties. Indeed, the danger exists of unduly ascribing a physical meaning to corrective terms whose function is primarily to account in an empirical fashion for discrepancies between "expected" and observed results. The link between this type of empirical approach and the knowledge that the ground state energy is uniquely determined by the electron density is lost somewhere along the road, although some of the "steric effects" are here and there vaguely traced back to electronic effects. The approach presented in this monograph goes back to the fundamen tals in that it is exclusively based on interactions involving nuclear and electronic charges. Confining the study to molecules in their equilibrium geometry, the problem of molecular energies is reduced to its electrostatic aspects, explicitly involving local electron populations.

Basic Principles and Techniques of Molecular Quantum Mechanics

Basic Principles and Techniques of Molecular Quantum Mechanics
Author: Ralph E. Christoffersen
Publisher: Springer Science & Business Media
Total Pages: 698
Release: 2013-03-08
Genre: Science
ISBN: 1468463608

New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. New York, New York CHARLES R. CANTOR Preface This book is not a traditional quantum chemistry textbook. Instead, it represents a concept that has evolved from teaching graduate courses in quantum chemistry over a number of years, and encountering students with diverse backgrounds.

Chemical Applications of Atomic and Molecular Electrostatic Potentials

Chemical Applications of Atomic and Molecular Electrostatic Potentials
Author: Peter Politzer
Publisher: Springer Science & Business Media
Total Pages: 473
Release: 2013-06-29
Genre: Science
ISBN: 147579634X

On March 26-27, 1980, a symposium organized by one of us (P. P. ) was held at the l79th American Chemical Society National ~1eeting in Houston, Texas, under the sponsorship of the Theoretical Chemistry Subdivision of the Division of Physical Chemistry. The symposium was entitled "The Role of the Electrostatic Potential in Chemistry," and it served as a stimulus for this book. The original scope and coverage have been broadened, however; included here, in addition to contributions from the eleven invited symposium speakers and two of the poster-session participants, are four papers that were specially invited for this book. Furthermore, several authors have taken this opportunity to present at least partial reviews of the areas being discussed. Most of the manuscripts were completed in the late spring and early summer of 1980. We hope that this book will achieve two goals: First, we are trying to provide an overall picture, including recent advances, of current chemical research, both fundamental and applied, involving the electrostatic potential. Second, we want to convey an appreci ation of both the powers and also the limitations of the electro static potential approach. In order to achieve these goals, we have selected contributors whose research areas provide a very broad coverage of the field. Throughout the book, we have used a. u.

X-Ray Charge Densities and Chemical Bonding

X-Ray Charge Densities and Chemical Bonding
Author: Philip Coppens
Publisher: International Union of Crystallography
Total Pages: 373
Release: 1997-05-08
Genre: Science
ISBN: 0195356942

This book deals with the electron density distribution in molecules and solids as obtained experimentally by X-ray diffraction. It is a comprehensive treatment of the methods involved, and the interpretation of the experimental results in terms of chemical bonding and intermolecular interactions. Inorganic and organic solids, as well as metals, are covered in the chapters dealing with specific systems. As a whole, this monograph is especially appealing because of its broad interface with numerous disciplines. Accurate X-ray diffraction intensities contain fundamental information on the charge distribution in crystals, which can be compared directly with theoretical results, and used to derive other physical properties, such as electrostatic moments, the electrostatic potential and lattice energies, which are accessible by spectroscopic and thermodynamic measurements. Consequently, the work will be of great interest to a broad range of crystallographers and physical scientists.

Experimental Quantum chemistry

Experimental Quantum chemistry
Author: Peter Hedvig
Publisher: Elsevier
Total Pages: 534
Release: 2012-12-02
Genre: Science
ISBN: 0323146805

Experimental Quantum Chemistry is a comprehensive account of experimental quantum chemistry and covers topics ranging from basic quantum theory to atoms and ions, photons, electrons, and positrons. Nuclei, molecules, and free radicals are also discussed. This volume is comprised of eight chapters and begins with an overview of the basic experiments and ideas leading to the development of quantum theory, with special emphasis on the problems of chemistry. The main properties of electromagnetic radiation are then considered, along with the most important relations of electrons and positrons in chemistry; the quantum theory of isolated atoms and ions; the structure of nuclei and the main applications to organic chemistry; and the chemical structure and reactivity of molecules. The theoretical and experimental aspects of interpreting free radical structures on the basis of the molecular orbital and valence bond theories are also explored. The final chapter is devoted to the chemistry of the organic solid state, paying particular attention to the structure and molecular mobilities of organic solids, collective crystal states (excitons, phonons, and polaritons), energy transfer processes, and reactions in the solid state. This book should be of interest to physicists and organic chemists.

Solvent Effects and Chemical Reactivity

Solvent Effects and Chemical Reactivity
Author: Orlando Tapia
Publisher: Springer Science & Business Media
Total Pages: 383
Release: 2006-04-11
Genre: Science
ISBN: 0306469316

This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.

Chemistry 2e

Chemistry 2e
Author: Paul Flowers
Publisher:
Total Pages: 0
Release: 2019-02-14
Genre: Chemistry
ISBN: 9781947172623

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.

Advances in Chemical Physics

Advances in Chemical Physics
Author: Ilya Prigogine
Publisher: John Wiley & Sons
Total Pages: 592
Release: 2009-09-09
Genre: Science
ISBN: 0470142219

Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.

Compendium of Terminology in Analytical Chemistry

Compendium of Terminology in Analytical Chemistry
Author: D Brynn Hibbert
Publisher: Royal Society of Chemistry
Total Pages: 691
Release: 2023-01-27
Genre: Science
ISBN: 1782629475

First printed in 1978, this latest edition takes into account the expansion of new analytical procedures and at the same time the diversity of the techniques and the quality and performance characteristics of the procedures. This new volume will be an indispensable reference resource for the coming decade, revising and updating additional accepted terminology.