Semiconductor Quantum Dots

Semiconductor Quantum Dots
Author: Y. Masumoto
Publisher: Springer Science & Business Media
Total Pages: 500
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3662050013

Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.

Semiconductor Quantum Dots

Semiconductor Quantum Dots
Author: Ladislaus Alexander Banyai
Publisher: World Scientific
Total Pages: 264
Release: 1993-05-28
Genre: Science
ISBN: 9814504238

Semiconductor Quantum Dots presents an overview of the background and recent developments in the rapidly growing field of ultrasmall semiconductor microcrystallites, in which the carrier confinement is sufficiently strong to allow only quantized states of the electrons and holes. The main emphasis of this book is the theoretical analysis of the confinement induced modifications of the optical and electronic properties of quantum dots in comparison with extended materials. The book develops the theoretical background material for the analysis of carrier quantum-confinement effects, introduces the different confinement regimes for relative or center-of-mass motion quantization of the electron-hole-pairs, and gives an overview of the best approximation schemes for each regime. A detailed discussion of the carrier states in quantum dots is presented and surface polarization instabilities are analyzed, leading to the self-trapping of carriers near the surface of the dots. The influence of spin-orbit coupling on the quantum-confined carrier states is discussed. The linear and nonlinear optical properties of small and large quantum dots are studied in detail and the influence of the quantum-dot size distribution in many realistic samples is outlined. Phonons in quantum dots as well as the influence of external electric or magnetic fields are also discussed. Last but not least the recent developments dealing with regular systems of quantum dots are also reviewed. All things included, this is an important piece of work on semiconductor quantum dots not to be dismissed by serious researchers and physicists.

Self-Organized Quantum Dots for Memories

Self-Organized Quantum Dots for Memories
Author: Tobias Nowozin
Publisher: Springer Science & Business Media
Total Pages: 163
Release: 2013-10-01
Genre: Technology & Engineering
ISBN: 3319019708

Today’s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter’s non-volatility with very fast write times. This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble. In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics.

Single Semiconductor Quantum Dots

Single Semiconductor Quantum Dots
Author: Peter Michler
Publisher: Springer Science & Business Media
Total Pages: 390
Release: 2009-06-13
Genre: Technology & Engineering
ISBN: 3540874461

This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.

Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids

Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids
Author: Rachel Hoffman Gilmore
Publisher:
Total Pages: 117
Release: 2017
Genre:
ISBN:

Quantum dots, also called semiconductor nanocrystals, are an interesting class of materials because their band gap is a function of the quantum dot size. Their optical properties are not determined solely by the atomic composition, but may be engineered. Advances in quantum dot synthesis have enabled control of the ensemble size dispersity and the creation of monodisperse quantum dot ensembles with size variations of less than one atomic layer. Quantum dots have been used in a variety of applications including solar cells, light-emitting diodes, photodetectors, and thermoelectrics. In many of these applications, understanding charge transport in quantum dot solids is crucial to optimizing efficient devices. We examine charge transport in monodisperse, coupled quantum dot solids using spectroscopic techniques explained by hopping transport models that provide a complementary picture to device measurements. In our monodisperse quantum dot solids, the site-to-site energetic disorder that comes from size dispersity and the size-dependent band gap is very small and spatial disorder in the quantum dot superlattice often has a greater impact on charge transport. In Chapter 2, we show that improved structural order from self-assembly in monodisperse quantum dots reduces the interparticle spacing and has a greater impact than reduced energetic disorder on increasing charge carrier hopping rates. In Chapter 3, we present temperature-dependent transport measurements that demonstrate again that when energetic disorder is very low, structural changes will dominate the dynamics. We find increasing mobility with decreasing temperature that can be explained by a 1-2 Å contraction in the edge-to-edge nearest neighbor quantum dot spacing. In Chapter 4, we study optical states that are 100-200 meV lower in energy than the band gap. Because we work with monodisperse quantum dots, we are able to resolve this trap state separately from the band edge state and study its optical properties. We identify the trap state as dimers that form during synthesis and ligand exchange when two bare quantum dot surfaces fuse. The findings of this thesis point to the importance of minimizing the structural disorder of the coupled quantum dot solid in addition to the energetic disorder to optimize charge carrier transport.

Quantum Dots

Quantum Dots
Author: Elena Borovitskaya
Publisher: World Scientific
Total Pages: 214
Release: 2002-07-08
Genre: Technology & Engineering
ISBN: 9814488798

In this book, leading experts on quantum dot theory and technology provide comprehensive reviews of all aspects of quantum dot systems. The following topics are covered: (1) energy states in quantum dots, including the effects of strain and many-body effects; (2) self-assembly and self-ordering of quantum dots in semiconductor systems; (3) growth, structures, and optical properties of III-nitride quantum dots; (4) quantum dot lasers.

Quantum Semiconductor Devices and Technologies

Quantum Semiconductor Devices and Technologies
Author: Tom Pearsall
Publisher: Springer Science & Business Media
Total Pages: 270
Release: 2013-11-27
Genre: Technology & Engineering
ISBN: 1461544513

stacked QD structure and is useful for examining the possibility of all optical measurement of stacked QD layers. Optical absorption spectra of self-assembled QDs has been little reported, and further investigation in necessary to study hole-burning memory. 2.5 Summary This chapter describes recent advances in quantum dot fabrication tech nologies, focusing on our self-formed quantum dot technologies including TSR quantum dots and SK-mode self-assembled quantum dots. As is described in this chapter, there are many possible device applications such as quantum dot tunneling memory devices, quantum dot fioating-dot gate FETs, quantum dot lasers, and quantum dot hole-burning memory devices. The quantum dot laser applications seem to be the most practicable among these applications. However, many problems remain to be solved before even this application becomes practical. The most important issue is to of self-assembled quantum dots more pre control the size and position cisely, with an accuracy on an atomic scale. The confinement must be enough to keep the separation energy between quantized energy levels high enough to get high-temperature characteristics. The lasing oscillation frequency should be fixed at 1.3 f.lITl or 1.5 f.lITl for optical communication. Phonon bottleneck problems should be solved by the optimization of device structures. Fortunately, there is much activity in the area of quantum dot lasers and, therefore, many breakthroughs will be made, along with the exploration of other new application areas.

Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots

Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots
Author: Robson Ferreira
Publisher: Morgan & Claypool Publishers
Total Pages: 148
Release: 2016-02-23
Genre: Technology & Engineering
ISBN: 1681741539

This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master’s level.