Chaotic Systems
Download Chaotic Systems full books in PDF, epub, and Kindle. Read online free Chaotic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Christian Beck |
Publisher | : Cambridge University Press |
Total Pages | : 310 |
Release | : 1993-07 |
Genre | : Mathematics |
ISBN | : 0521433673 |
This book deals with the various thermodynamic concepts used for the analysis of nonlinear dynamical systems. The most important invariants used to characterize chaotic systems are introduced in a way that stresses the interconnections with thermodynamics and statistical mechanics. Among the subjects treated are probabilistic aspects of chaotic dynamics, the symbolic dynamics technique, information measures, the maximum entropy principle, general thermodynamic relations, spin systems, fractals and multifractals, expansion rate and information loss, the topological pressure, transfer operator methods, repellers and escape. The more advanced chapters deal with the thermodynamic formalism for expanding maps, thermodynamic analysis of chaotic systems with several intensive parameters, and phase transitions in nonlinear dynamics.
Author | : Sundarapandian Vaidyanathan |
Publisher | : Springer |
Total Pages | : 599 |
Release | : 2016-03-22 |
Genre | : Technology & Engineering |
ISBN | : 3319302795 |
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
Author | : Xiong Wang |
Publisher | : Springer Nature |
Total Pages | : 661 |
Release | : 2021-12-01 |
Genre | : Technology & Engineering |
ISBN | : 3030758214 |
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.
Author | : Thomas S. Parker |
Publisher | : Springer Science & Business Media |
Total Pages | : 354 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461234867 |
One of the basic tenets of science is that deterministic systems are completely predictable-given the initial condition and the equations describing a system, the behavior of the system can be predicted 1 for all time. The discovery of chaotic systems has eliminated this viewpoint. Simply put, a chaotic system is a deterministic system that exhibits random behavior. Though identified as a robust phenomenon only twenty years ago, chaos has almost certainly been encountered by scientists and engi neers many times during the last century only to be dismissed as physical noise. Chaos is such a wide-spread phenomenon that it has now been reported in virtually every scientific discipline: astronomy, biology, biophysics, chemistry, engineering, geology, mathematics, medicine, meteorology, plasmas, physics, and even the social sci ences. It is no coincidence that during the same two decades in which chaos has grown into an independent field of research, computers have permeated society. It is, in fact, the wide availability of inex pensive computing power that has spurred much of the research in chaotic dynamics. The reason is simple: the computer can calculate a solution of a nonlinear system. This is no small feat. Unlike lin ear systems, where closed-form solutions can be written in terms of the system's eigenvalues and eigenvectors, few nonlinear systems and virtually no chaotic systems possess closed-form solutions.
Author | : Robert Devaney |
Publisher | : CRC Press |
Total Pages | : 280 |
Release | : 2018-03-09 |
Genre | : Mathematics |
ISBN | : 0429981937 |
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author | : Morris W. Hirsch |
Publisher | : Academic Press |
Total Pages | : 433 |
Release | : 2004 |
Genre | : Business & Economics |
ISBN | : 0123497035 |
Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.
Author | : Zhong Li |
Publisher | : Springer |
Total Pages | : 300 |
Release | : 2006-08-02 |
Genre | : Computers |
ISBN | : 3540332219 |
This book presents the fundamental concepts of fuzzy logic and fuzzy control, chaos theory and chaos control. It also provides a definition of chaos on the metric space of fuzzy sets. The book raises many questions and generates a great potential to attract more attention to combine fuzzy systems with chaos theory. In this way it contains important seeds for future scientific research and engineering applications.
Author | : Ivan Zelinka |
Publisher | : Springer Science & Business Media |
Total Pages | : 533 |
Release | : 2010-02-23 |
Genre | : Computers |
ISBN | : 3642107060 |
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Author | : S. Neil Rasband |
Publisher | : Courier Dover Publications |
Total Pages | : 244 |
Release | : 2015-08-19 |
Genre | : Science |
ISBN | : 0486795993 |
Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.
Author | : David P. Feldman |
Publisher | : Princeton University Press |
Total Pages | : 262 |
Release | : 2019-08-06 |
Genre | : Mathematics |
ISBN | : 0691161526 |
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.