CFD simulations of particle laden flows: Particle transport and separation

CFD simulations of particle laden flows: Particle transport and separation
Author: David Schellander
Publisher: Anchor Academic Publishing (aap_verlag)
Total Pages: 152
Release: 2014-02-01
Genre: Science
ISBN: 3954896710

This study presents the basic models for discrete and continuous particle laden flow simulation. An overview of the two main approaches, the Lagrangian discrete particle model and the Eulerian granular phase model is given. Moreover these two approaches are combined to a hybrid model to use the benefits of the discrete and continuous description. This safes computational time and increase the efficiency of particle laden flow simulations. Furthermore the models are extended to poly-disperse particles including a simple agglomeration model based on a population balance equation. Finally the usability of the models is shown at a pneumatic particle transport system including particle strand building and the separation of particles using an industrial cyclone.

Hybrid Particle Laden Flow Modelling

Hybrid Particle Laden Flow Modelling
Author: David Schellander
Publisher: GRIN Verlag
Total Pages: 155
Release: 2013-09-20
Genre: Technology & Engineering
ISBN: 3656501920

Doctoral Thesis / Dissertation from the year 2013 in the subject Engineering - Mechanical Engineering, grade: 1, University of Linz (Department on Particulate Flow Modelling), language: English, abstract: The numerical hybrid model EUgran+, which is an Eulerian-Eulerian granular phase model extended with models from the Eulerian-Lagrangian model for dense rapid particulate flows, is modified to account for poly-dispersed particle diameter distributions. These modifications include the implementation of I) a new poly-dispersed drag law and of II) new particle boundary conditions distinguishing between sliding and non-sliding particle-wall collisions and III) a new implementation of the population balance equation in the agglomeration model using the Eulerian-Lagrangian approach, referred to as Bus-stop model. Further, the applicability of the EUgran+ model is extended to cover dilute to dense poly-disperse particulate flows. Furthermore, this provides an improvement in the numerical simulation of dust separation and the formation of particle strands in industrial scale cyclones. In this PHD thesis, the EUgran+Poly model is validated at 3 specific cases with different mass loadings: I) poly-dispersed particle conveying in a square pipe with a 90 degree bend at low mass loading (L = 0:00206); II) a particle conveying case in a rectangular pipe with a double-loop at high mass loading (L = 1:5); III) in a vertical pipe the implementation of the agglomeration model is validated. To show the applicability of the presented models a simulation of an industrial cyclone in experimental scale is presented. The validation and application shows that considering a poly-disperse Eulerian-Eulerian granular phase improves the accordance of the simulation results with measurements significantly. Finally, the hybrid model is a good compromise for a computational efficient simulation of particulate transport and separation with different mass loading regimes.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: Jiyuan Tu
Publisher: Butterworth-Heinemann
Total Pages: 500
Release: 2018-01-26
Genre: Technology & Engineering
ISBN: 0081012446

Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. Includes a new chapter on practical guidelines for mesh generation Provides full coverage of high-pressure fluid dynamics and the meshless approach to provide a broader overview of the application areas where CFD can be used Includes online resources with a new bonus chapter featuring detailed case studies and the latest developments in CFD

Laboratory Unit Operations and Experimental Methods in Chemical Engineering

Laboratory Unit Operations and Experimental Methods in Chemical Engineering
Author: Omar M. Basha
Publisher: BoD – Books on Demand
Total Pages: 185
Release: 2018-10-10
Genre: Science
ISBN: 1789840554

This book covers a wide variety of topics related to the application of experimental methods, in addition to the pedagogy of chemical engineering laboratory unit operations. The purpose of this book is to create a platform for the exchange of different experimental techniques, approaches and lessons, in addition to new ideas and strategies in teaching laboratory unit operations to undergraduate chemical engineering students. It is recommended for instructors and students of chemical engineering and natural sciences who are interested in reading about different experimental setups and techniques, covering a wide range of scales, which can be widely applied to many areas of chemical engineering interest.

Coupled CFD-DEM Modeling

Coupled CFD-DEM Modeling
Author: Hamid Reza Norouzi
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2016-10-21
Genre: Technology & Engineering
ISBN: 1119005299

Discusses the CFD-DEM method of modeling which combines both the Discrete Element Method and Computational Fluid Dynamics to simulate fluid-particle interactions. Deals with both theoretical and practical concepts of CFD-DEM, its numerical implementation accompanied by a hands-on numerical code in FORTRAN Gives examples of industrial applications

Computational Fluid Dynamics (CFD) Simulation of a Gas-Solid Fluidized Bed. Residence Time Validation Study

Computational Fluid Dynamics (CFD) Simulation of a Gas-Solid Fluidized Bed. Residence Time Validation Study
Author: Baru Debtera
Publisher: GRIN Verlag
Total Pages: 26
Release: 2021-11-29
Genre: Science
ISBN: 3346547728

Academic Paper from the year 2021 in the subject Physics - Mechanics, , language: English, abstract: In this study, numerical simulations of a gas-solid fluidized bed reactor involving a two-fluid Eulerian multiphase model and incorporating the Kinetic Theory of Granular Flow (KTGF) for the solids phase have been performed using a commercial Computational Fluid Dynamics (CFD) software. The fluidized bed setup consists of 1,5 m height and 0,2 m diameter in which a series of experiments were performed using Helium tracer to determine the Residence Time Distribution (RTD) at various normalized velocities i.e., with different degrees of gas-solids mixing. Both 2D and 3D simulations of the fluidized bed reactor are performed. The main purpose of this study is to understand the hydrodynamic behavior of a gas-solid fluidized bed reactor through a framework of Eulerian multiphase model and to analyze hydrodynamic behavior of the gas-solids mixing.