Causal Inference In Statistics Social And Biomedical Sciences
Download Causal Inference In Statistics Social And Biomedical Sciences full books in PDF, epub, and Kindle. Read online free Causal Inference In Statistics Social And Biomedical Sciences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Guido W. Imbens |
Publisher | : Cambridge University Press |
Total Pages | : 647 |
Release | : 2015-04-06 |
Genre | : Business & Economics |
ISBN | : 0521885884 |
This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.
Author | : Judea Pearl |
Publisher | : John Wiley & Sons |
Total Pages | : 162 |
Release | : 2016-01-25 |
Genre | : Mathematics |
ISBN | : 1119186862 |
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Author | : Tyler J. VanderWeele |
Publisher | : Oxford University Press, USA |
Total Pages | : 729 |
Release | : 2015 |
Genre | : Mathematics |
ISBN | : 0199325871 |
A comprehensive examination of methods for mediation and interaction, VanderWeele's book is the first to approach this topic from the perspective of causal inference. Numerous software tools are provided, and the text is both accessible and easy to read, with examples drawn from diverse fields. The result is an essential reference for anyone conducting empirical research in the biomedical or social sciences.
Author | : Carlo Berzuini |
Publisher | : John Wiley & Sons |
Total Pages | : 387 |
Release | : 2012-06-04 |
Genre | : Mathematics |
ISBN | : 1119941733 |
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.
Author | : Joseph K. Blitzstein |
Publisher | : CRC Press |
Total Pages | : 620 |
Release | : 2019-02-08 |
Genre | : Mathematics |
ISBN | : 0429766742 |
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. The second edition adds many new examples, exercises, and explanations, to deepen understanding of the ideas, clarify subtle concepts, and respond to feedback from many students and readers. New supplementary online resources have been developed, including animations and interactive visualizations, and the book has been updated to dovetail with these resources. Supplementary material is available on Joseph Blitzstein’s website www. stat110.net. The supplements include: Solutions to selected exercises Additional practice problems Handouts including review material and sample exams Animations and interactive visualizations created in connection with the edX online version of Stat 110. Links to lecture videos available on ITunes U and YouTube There is also a complete instructor's solutions manual available to instructors who require the book for a course.
Author | : Nick Huntington-Klein |
Publisher | : CRC Press |
Total Pages | : 646 |
Release | : 2021-12-20 |
Genre | : Business & Economics |
ISBN | : 1000509141 |
Extensive code examples in R, Stata, and Python Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions An easy-to-read conversational tone Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
Author | : G. Arminger |
Publisher | : Springer Science & Business Media |
Total Pages | : 603 |
Release | : 2013-06-29 |
Genre | : Psychology |
ISBN | : 1489912924 |
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Author | : David A. Freedman |
Publisher | : Cambridge University Press |
Total Pages | : 416 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 0521195004 |
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.
Author | : Robert D. Retherford |
Publisher | : John Wiley & Sons |
Total Pages | : 274 |
Release | : 2011-02-01 |
Genre | : Mathematics |
ISBN | : 1118031342 |
Simplifies the treatment of statistical inference focusing on how to specify and interpret models in the context of testing causal theories. Simple bivariate regression, multiple regression, multiple classification analysis, path analysis, logit regression, multinomial logit regression and survival models are among the subjects covered. Features an appendix of computer programs (for major statistical packages) that are used to generate illustrative examples contained in the chapters.
Author | : Judea Pearl |
Publisher | : Createspace Independent Publishing Platform |
Total Pages | : 0 |
Release | : 2015 |
Genre | : Causation |
ISBN | : 9781507894293 |
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.