Categories In Algebra Geometry And Mathematical Physics
Download Categories In Algebra Geometry And Mathematical Physics full books in PDF, epub, and Kindle. Read online free Categories In Algebra Geometry And Mathematical Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Gerd Rudolph |
Publisher | : Springer Science & Business Media |
Total Pages | : 766 |
Release | : 2012-11-09 |
Genre | : Science |
ISBN | : 9400753454 |
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Author | : Kentaro Hori |
Publisher | : American Mathematical Soc. |
Total Pages | : 954 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821829556 |
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Author | : Peter Szekeres |
Publisher | : Cambridge University Press |
Total Pages | : 620 |
Release | : 2004-12-16 |
Genre | : Mathematics |
ISBN | : 9780521829601 |
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.
Author | : Alexei Davydov |
Publisher | : American Mathematical Soc. |
Total Pages | : 482 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 0821839705 |
Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.
Author | : D.H. Sattinger |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1475719108 |
This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.
Author | : Marek Kuś |
Publisher | : Springer Nature |
Total Pages | : 139 |
Release | : 2019-11-11 |
Genre | : Science |
ISBN | : 3030308960 |
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 193 |
Release | : 2014-07-24 |
Genre | : Mathematics |
ISBN | : 1107044243 |
A short introduction ideal for students learning category theory for the first time.
Author | : Gary L. Mullen |
Publisher | : American Mathematical Soc. |
Total Pages | : 278 |
Release | : 2008 |
Genre | : Computers |
ISBN | : 0821843095 |
This volume contains the proceedings of the Eighth International Conference on Finite Fields and Applications, held in Melbourne, Australia, July 9-13, 2007. It contains 5 invited survey papers as well as original research articles covering various theoretical and applied areas related to finite fields.Finite fields, and the computational and algorithmic aspects of finite field problems, continue to grow in importance and interest in the mathematical and computer science communities because of their applications in so many diverse areas. In particular, finite fields now play very important roles in number theory, algebra, and algebraic geometry, as well as in computer science, statistics, and engineering. Areas of application include algebraic coding theory, cryptology, and combinatorialdesign theory.
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 451 |
Release | : 2004-07-22 |
Genre | : Mathematics |
ISBN | : 0521532159 |
Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.
Author | : Saunders Mac Lane |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475747217 |
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.