Categorical Data Analysis Using The Sas System 2nd Edition
Download Categorical Data Analysis Using The Sas System 2nd Edition full books in PDF, epub, and Kindle. Read online free Categorical Data Analysis Using The Sas System 2nd Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Maura E. Stokes |
Publisher | : SAS Institute |
Total Pages | : 588 |
Release | : 2012-07-31 |
Genre | : Computers |
ISBN | : 1629590355 |
Statisticians and researchers will find this book, newly updated for SAS/STAT 12.1, to be a useful discussion of categorical data analysis techniques as well as an invaluable aid in applying these methods with SAS.
Author | : Alan Agresti |
Publisher | : John Wiley & Sons |
Total Pages | : 393 |
Release | : 2018-10-11 |
Genre | : Mathematics |
ISBN | : 1119405270 |
A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Author | : Alan Agresti |
Publisher | : John Wiley & Sons |
Total Pages | : 756 |
Release | : 2013-04-08 |
Genre | : Mathematics |
ISBN | : 1118710940 |
Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Author | : Maura Ellen Stokes |
Publisher | : SAS Press |
Total Pages | : 626 |
Release | : 2000 |
Genre | : Computers |
ISBN | : 9781580257107 |
Discusses hypothesis testing strategies for the assessment of association in contingency tables and sets of contingency tables. Also discusses various modeling strategies available for describing the nature of the association between a categorical outcome measure and a set of explanatory variables.
Author | : Norm O'Rourke |
Publisher | : SAS Institute |
Total Pages | : 552 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 1590474171 |
Providing practice data inspired by actual studies, this book explains how to choose the right statistic, understand the assumptions underlying the procedure, prepare an SAS program for an analysis, interpret the output, and summarize the analysis and results according to the format prescribed in the Publication Manual of the American Psychological Association.
Author | : Geoff Der |
Publisher | : CRC Press |
Total Pages | : 250 |
Release | : 2014-08-15 |
Genre | : Mathematics |
ISBN | : 1466599030 |
Easily Use SAS to Produce Your Graphics Diagrams, plots, and other types of graphics are indispensable components in nearly all phases of statistical analysis, from the initial assessment of the data to the selection of appropriate statistical models to the diagnosis of the chosen models once they have been fitted to the data. Harnessing the full graphics capabilities of SAS, A Handbook of Statistical Graphics Using SAS ODS covers essential graphical methods needed in every statistician’s toolkit. It explains how to implement the methods using SAS 9.4. The handbook shows how to use SAS to create many types of statistical graphics for exploring data and diagnosing fitted models. It uses SAS’s newer ODS graphics throughout as this system offers a number of advantages, including ease of use, high quality of results, consistent appearance, and convenient semiautomatic graphs from the statistical procedures. Each chapter deals graphically with several sets of example data from a wide variety of areas, such as epidemiology, medicine, and psychology. These examples illustrate the use of graphic displays to give an overview of data, to suggest possible hypotheses for testing new data, and to interpret fitted statistical models. The SAS programs and data sets are available online.
Author | : Alex Dmitrienko |
Publisher | : SAS Institute |
Total Pages | : 455 |
Release | : 2017-07-17 |
Genre | : Computers |
ISBN | : 1635261449 |
Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book.
Author | : Graham J. G. Upton |
Publisher | : John Wiley & Sons |
Total Pages | : 212 |
Release | : 2016-11-14 |
Genre | : Mathematics |
ISBN | : 1119307864 |
Introduces the key concepts in the analysis of categoricaldata with illustrative examples and accompanying R code This book is aimed at all those who wish to discover how to analyze categorical data without getting immersed in complicated mathematics and without needing to wade through a large amount of prose. It is aimed at researchers with their own data ready to be analyzed and at students who would like an approachable alternative view of the subject. Each new topic in categorical data analysis is illustrated with an example that readers can apply to their own sets of data. In many cases, R code is given and excerpts from the resulting output are presented. In the context of log-linear models for cross-tabulations, two specialties of the house have been included: the use of cobweb diagrams to get visual information concerning significant interactions, and a procedure for detecting outlier category combinations. The R code used for these is available and may be freely adapted. In addition, this book: Uses an example to illustrate each new topic in categorical data Provides a clear explanation of an important subject Is understandable to most readers with minimal statistical and mathematical backgrounds Contains examples that are accompanied by R code and resulting output Includes starred sections that provide more background details for interested readers Categorical Data Analysis by Example is a reference for students in statistics and researchers in other disciplines, especially the social sciences, who use categorical data. This book is also a reference for practitioners in market research, medicine, and other fields.
Author | : Daniel Powers |
Publisher | : Emerald Group Publishing |
Total Pages | : 330 |
Release | : 2008-11-13 |
Genre | : Psychology |
ISBN | : 1781906599 |
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
Author | : Michael Friendly |
Publisher | : SAS Press |
Total Pages | : 0 |
Release | : 2000 |
Genre | : Computer graphics |
ISBN | : 9781580256605 |
Graphical methods for quantitative data are well developed and widely used. However, until now with this comprehensive treatment, few graphical methods existed for categorical data. In this innovative book, the author presents many aspects of the relationships among variables, the adequacy of a fitted model, and possibly unusual features of the data that can best be seen and appreciated in an informative graphical display.