Cartan Geometries and their Symmetries

Cartan Geometries and their Symmetries
Author: Mike Crampin
Publisher: Springer
Total Pages: 298
Release: 2016-05-20
Genre: Mathematics
ISBN: 9462391920

In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit. We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.

An Alternative Approach to Lie Groups and Geometric Structures

An Alternative Approach to Lie Groups and Geometric Structures
Author: Ercüment H. Ortaçgil
Publisher: Oxford University Press
Total Pages: 240
Release: 2018-06-28
Genre: Mathematics
ISBN: 0192554840

This book presents a new and innovative approach to Lie groups and differential geometry. Rather than compiling and reviewing the existing material on this classical subject, Professor Ortaçgil instead questions the foundations of the subject, and proposes a new direction. Aimed at the curious and courageous mathematician, this book aims to provoke further debate and inspire further development of this original research.

Differential Geometry

Differential Geometry
Author: R.W. Sharpe
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2000-11-21
Genre: Mathematics
ISBN: 9780387947327

Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.

Applicable Differential Geometry

Applicable Differential Geometry
Author: M. Crampin
Publisher: Cambridge University Press
Total Pages: 408
Release: 1986
Genre: Mathematics
ISBN: 9780521231909

An introduction to geometrical topics used in applied mathematics and theoretical physics.

Differential Equations - Geometry, Symmetries and Integrability

Differential Equations - Geometry, Symmetries and Integrability
Author: Boris Kruglikov
Publisher: Springer Science & Business Media
Total Pages: 394
Release: 2009-07-24
Genre: Mathematics
ISBN: 3642008739

The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.

Differential Geometry and Its Applications

Differential Geometry and Its Applications
Author: Oldřich Kowalski
Publisher: World Scientific
Total Pages: 732
Release: 2008
Genre: Mathematics
ISBN: 9812790616

This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture OC Leonhard Euler OCo 300 years onOCO by R Wilson. Notable contributors include J F Cariena, M Castrilln Lpez, J Erichhorn, J-H Eschenburg, I KoliO, A P Kopylov, J Korbai, O Kowalski, B Kruglikov, D Krupka, O Krupkovi, R L(r)andre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muoz Masqu(r), S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovik, J Szilasi, L Tamissy, P Walczak, and others."

Differential Geometry And Its Applications - Proceedings Of The 10th International Conference On Dga2007

Differential Geometry And Its Applications - Proceedings Of The 10th International Conference On Dga2007
Author: Demeter Krupka
Publisher: World Scientific
Total Pages: 732
Release: 2008-07-14
Genre: Mathematics
ISBN: 9814471941

This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture “Leonhard Euler — 300 years on” by R Wilson. Notable contributors include J F Cariñena, M Castrillón López, J Erichhorn, J-H Eschenburg, I Kolář, A P Kopylov, J Korbaš, O Kowalski, B Kruglikov, D Krupka, O Krupková, R Léandre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muñoz Masqué, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovák, J Szilasi, L Tamássy, P Walczak, and others.

A Tour of Subriemannian Geometries, Their Geodesics and Applications

A Tour of Subriemannian Geometries, Their Geodesics and Applications
Author: Richard Montgomery
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2002
Genre: Mathematics
ISBN: 0821841653

Subriemannian geometries can be viewed as limits of Riemannian geometries. They arise naturally in many areas of pure (algebra, geometry, analysis) and applied (mechanics, control theory, mathematical physics) mathematics, as well as in applications (e.g., robotics). This book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book are an elementary exposition of Gromov's idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants of distributions. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry. The reader is assumed to have an introductory knowledge of differential geometry. This book that also has a chapter devoted to open problems can serve as a good introduction to this new, exciting area of mathematics.

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
Total Pages: 682
Release: 2001-06-12
Genre: Mathematics
ISBN: 0821828487

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.

Gravitation and Gauge Symmetries

Gravitation and Gauge Symmetries
Author: M Blagojevic
Publisher: CRC Press
Total Pages: 522
Release: 2001-10-25
Genre: Science
ISBN: 142003426X

In the course of the development of electromagnetic, weak and strong interactions, the concept of (internal) gauge invariance grew up and established itself as an unavoidable dynamical principle in particle physics. It is less known that the principle of equivalence, and the basic dynamical properties of the gravitational interaction can also be ex