Carbohydrate-Based Interactions at the Molecular and the Cellular Level

Carbohydrate-Based Interactions at the Molecular and the Cellular Level
Author: Kieran L. Hudson
Publisher: Springer
Total Pages: 216
Release: 2018-05-28
Genre: Science
ISBN: 3319777068

This book offers a clearly written and highly accessible account of two different aspects of carbohydrate chemistry. Carbohydrates are an essential component of life and have many important biological functions, but the details of how carbohydrates interact with other biomolecules to mediate biological signalling remain unclear. Firstly, this thesis details innovative methods to mine protein structural data to uncover new features of carbohydrate-based interactions. It also explains these findings using physical chemistry, specifically CH–pi interactions associated with the properties of the interacting partners. Carbohydrates are also critical for tissue growth and development, yet are underexploited in the materials science that underpins much of regenerative medicine. As such, the second part of this thesis describes a diverse array of techniques ranging from synthetic chemistry and enzymatic synthesis to prepare a wide variety of carbohydrates, and materials chemistry to prepare glycosylated hydrogels, to cell biology to determine the effects on cellular development for tissue engineering applications.

CH-[pi] Interactions Play a Central Role in Protein Recognition of Carbohydrates

CH-[pi] Interactions Play a Central Role in Protein Recognition of Carbohydrates
Author: Roger Christopher Diehl
Publisher:
Total Pages: 102
Release: 2021
Genre:
ISBN:

Carbohydrate-protein interactions play a central role in biology, but knowledge of the forces underlying them is limited. Carbohydrates are generally hydrophilic and therefore present unique challenges in their recognition. One underappreciated force involved in carbohydrate-protein interactions is the CH-[pi] interaction, an attractive interaction between the aliphatic protons of a carbohydrate and the [pi] system of an aromatic ring. In this thesis, I examine the fundamental nature, strength, and biological significance of this interaction, largely in the context of a family of carbohydrate-binding proteins known as galectins. In Chapter 1, I review previous knowledge of the forces underlying carbohydrate-binding proteins and the forces they utilize to bind their ligands. In particular, I focus on CH-[pi] interactions and galectins. In Chapter 2, I examine the forces that contribute to CH-[pi] interactions in the context of carbohydrates and aromatic compounds in aqueous solution. I find the CH-[pi] interaction to be electronic in nature, and demonstrate its selectivity between different carbohydrates. In Chapter 3, I determine the contribution of the CH-[pi] interaction to the ligand binding of galectin-3, a human carbohydrate-binding protein of medical significance. The data demonstrate that the CH-[pi] interaction accounts for a majority of the binding energy. In Chapter 4, I explore the biological implications of the CH-[pi] interaction in galectin-3. I demonstrate that the CH-[pi] interaction is critical for the biological activities of galectin-3. In Chapter 5, I propose several directions future researchers could take to extend this work. For three of four directions, I present the progress I have made during my studies. The work contained within this thesis demonstrates that CH-[pi] interactions play a central role in protein-carbohydrate interactions at both a molecular level and a biological level. Understanding the CH-[pi] interaction is key to explaining and predicting the activity of carbohydrate-binding proteins.

Non-covalent Interactions

Non-covalent Interactions
Author: Pavel Hobza
Publisher: Royal Society of Chemistry
Total Pages: 239
Release: 2010
Genre: Science
ISBN: 1847558534

Co-authored by an experimentalist (Klaus M3ller-Dethlefs ) and theoretician (Pavel Hobza), the aim of this book is to provide a general introduction into the science behind non-covalent interactions and molecular complexes using some important experimental and theoretical methods and approaches.

Glycoscience

Glycoscience
Author: Bertram O. Fraser-Reid
Publisher: Springer Science & Business Media
Total Pages: 2847
Release: 2008-04-14
Genre: Science
ISBN: 3540361545

As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.

Protein-Carbohydrate Interactions in Infectious Diseases

Protein-Carbohydrate Interactions in Infectious Diseases
Author: Carole A Bewley
Publisher: Royal Society of Chemistry
Total Pages: 265
Release: 2007-10-31
Genre: Science
ISBN: 1847555330

Protein-carbohydrate interactions is an exciting area of research with huge potential for development and exploration. These interactions are both widespread and diverse in biological processes and many play a crucial role in cellular recognition, attachment and adhesion. This is particularly true for host-pathogen interactions that lead to infectious diseases; as the surfaces of cells and pathogens display complex carbohydrate structures and carbohydrate binding proteins on their surface. Protein-Carbohydrate Interactions in Infectious Disease is part of the Biomolecular Science Series and provides a comprehensive overview of the subject, with contributions from leading experts in the field. Beginning with a general introduction, subsequent sections include: Atomic basis of protein-carbohydrate interactions, Structures and roles of Pseudomonas areuginosa lectins, Protein-carbohydrate interactions in enterobacterial infections, Retrocyclins: miniature lectins with potent antiviral activity, C-type lectin receptors that regulate pathogen recognition through the recognition of carbohydrates, Synthetic carbohydrate-based anti-malarial vaccines and glycobiology. With full colour throughout and an extensive bibliography this book is ideal for researchers interested in the area.

Transforming Glycoscience

Transforming Glycoscience
Author: National Research Council
Publisher: National Academies Press
Total Pages: 171
Release: 2012-10-23
Genre: Science
ISBN: 0309260868

A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.

Supramolecular Chemistry in Water

Supramolecular Chemistry in Water
Author: Stefan Kubik
Publisher: John Wiley & Sons
Total Pages: 586
Release: 2019-09-03
Genre: Science
ISBN: 3527344675

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day -Addresses topics such as molecular recognition, aggregation, catalysis, and more -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications -Edited by one of the leading international scientists in the field Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.