Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Algebras and Modules I

Algebras and Modules I
Author: Idun Reiten
Publisher: American Mathematical Soc.
Total Pages: 216
Release: 1998
Genre: Mathematics
ISBN: 9780821808504

Surveys developments in the representation theory of finite dimensional algebras and related topics in seven papers illustrating different techniques developed over the recent years. For graduate students and researchers with a background in commutative algebra, including rings, modules, and homological algebra. Suitable as a text for an advanced graduate course. No index. Member prices are $31 for institutions and $23 for individuals, and are available to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR

Cambridge International AS and A Level Mathematics: Pure Mathematics 1 Coursebook

Cambridge International AS and A Level Mathematics: Pure Mathematics 1 Coursebook
Author: Sue Pemberton
Publisher: Cambridge University Press
Total Pages: 337
Release: 2018-03-15
Genre: Education
ISBN: 1108407145

This series has been developed specifically for the Cambridge International AS & A Level Mathematics (9709) syllabus to be examined from 2020. Cambridge International AS & A Level Mathematics: Pure Mathematics 1 matches the corresponding unit of the syllabus, with a clear and logical progression through. It contains materials on topics such as quadratics, functions, coordinate geometry, circular measure, series, differentiation and integration. This coursebook contains a variety of features including recap sections for students to check their prior knowledge, detailed explanations and worked examples, end-of-chapter and cross-topic review exercises and 'Explore' tasks to encourage deeper thinking around mathematical concepts. Answers to coursebook questions are at the back of the book.

Foliation Theory in Algebraic Geometry

Foliation Theory in Algebraic Geometry
Author: Paolo Cascini
Publisher: Springer
Total Pages: 223
Release: 2016-03-30
Genre: Mathematics
ISBN: 3319244604

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions. Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study./div

Deformation Theory of Discontinuous Groups

Deformation Theory of Discontinuous Groups
Author: Ali Baklouti
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 498
Release: 2022-07-05
Genre: Mathematics
ISBN: 3110765306

This book contains the latest developments of the theory of discontinuous groups acting on homogenous spaces, from basic concepts to a comprehensive exposition. It develops the newest approaches and methods in the deformation theory of topological modules and unitary representations and focuses on the geometry of discontinuous groups of solvable Lie groups and their compact extensions. It also presents proofs of recent results, computes fundamental examples, and serves as an introduction and reference for students and experienced researchers in Lie theory, discontinuous groups, and deformation (and moduli) spaces.

Traces of Hecke Operators

Traces of Hecke Operators
Author: Andrew Knightly
Publisher: American Mathematical Soc.
Total Pages: 392
Release: 2006
Genre: Mathematics
ISBN: 0821837397

The Fourier coefficients of modular forms are of widespread interest as an important source of arithmetic information. In many cases, these coefficients can be recovered from explicit knowledge of the traces of Hecke operators. The original trace formula for Hecke operators was given by Selberg in 1956. Many improvements were made in subsequent years, notably by Eichler and Hijikata. This book provides a comprehensive modern treatment of the Eichler-Selberg/Hijikata trace formulafor the traces of Hecke operators on spaces of holomorphic cusp forms of weight $\mathtt{k >2$ for congruence subgroups of $\operatorname{SL 2(\mathbf{Z )$. The first half of the text brings together the background from number theory and representation theory required for the computation. Thisincludes detailed discussions of modular forms, Hecke operators, adeles and ideles, structure theory for $\operatorname{GL 2(\mathbf{A )$, strong approximation, integration on locally compact groups, the Poisson summation formula, adelic zeta functions, basic representation theory for locally compact groups, the unitary representations of $\operatorname{GL 2(\mathbf{R )$, and the connection between classical cusp forms and their adelic counterparts on $\operatorname{GL 2(\mathbf{A )$. Thesecond half begins with a full development of the geometric side of the Arthur-Selberg trace formula for the group $\operatorname{GL 2(\mathbf{A )$. This leads to an expression for the trace of a Hecke operator, which is then computed explicitly. The exposition is virtually self-contained, withcomplete references for the occasional use of auxiliary results. The book concludes with several applications of the final formula.