C Mathematical Function Handbook

C Mathematical Function Handbook
Author: Louis Baker
Publisher: Computing McGraw-Hill
Total Pages: 757
Release: 1992
Genre: Mathematics
ISBN: 9780079111586

C source code, algorithms and applications for a wide range of valuable scientific and engineering mathematical functions. Each function is discussed in detail with algorithms, applications, and key referneces. Includes a separate 3 1/2" disk.

The Mathematical-Function Computation Handbook

The Mathematical-Function Computation Handbook
Author: Nelson H.F. Beebe
Publisher: Springer
Total Pages: 1145
Release: 2017-08-20
Genre: Computers
ISBN: 3319641107

This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally useful, author-maintained MathCW website, containing source code for the book’s software, compiled libraries for numerous systems, pre-built C compilers, and other related materials; offers a unique approach to covering mathematical-function computation using decimal arithmetic; provides extremely versatile appendices for interfaces to numerous other languages: Ada, C#, C++, Fortran, Java, and Pascal; presupposes only basic familiarity with computer programming in a common language, as well as early level algebra; supplies a library that readily adapts for existing scripting languages, with minimal effort; supports both binary and decimal arithmetic, in up to 10 different floating-point formats; covers a significant portion (with highly accurate implementations) of the U.S National Institute of Standards and Technology’s 10-year project to codify mathematical functions. This highly practical text/reference is an invaluable tool for advanced undergraduates, recording many lessons of the intermingled history of computer hardw are and software, numerical algorithms, and mathematics. In addition, professional numerical analysts and others will find the handbook of real interest and utility because it builds on research by the mathematical software community over the last four decades.

Handbook of Mathematical Functions

Handbook of Mathematical Functions
Author: Milton Abramowitz
Publisher: Courier Corporation
Total Pages: 1068
Release: 1965-01-01
Genre: Mathematics
ISBN: 9780486612720

An extensive summary of mathematical functions that occur in physical and engineering problems

NIST Handbook of Mathematical Functions Hardback and CD-ROM

NIST Handbook of Mathematical Functions Hardback and CD-ROM
Author: Frank W. J. Olver
Publisher: Cambridge University Press
Total Pages: 968
Release: 2010-05-17
Genre: Mathematics
ISBN: 0521192250

The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.

Mathematical Handbook for Scientists and Engineers

Mathematical Handbook for Scientists and Engineers
Author: Granino A. Korn
Publisher: Courier Corporation
Total Pages: 1154
Release: 2013-04-26
Genre: Technology & Engineering
ISBN: 0486320235

Convenient access to information from every area of mathematics: Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, game theory, much more.

A Book of Abstract Algebra

A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 402
Release: 2010-01-14
Genre: Mathematics
ISBN: 0486474178

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

CRC Standard Mathematical Tables and Formulae, 32nd Edition

CRC Standard Mathematical Tables and Formulae, 32nd Edition
Author: Daniel Zwillinger
Publisher: CRC Press
Total Pages: 792
Release: 2011-06-22
Genre: Mathematics
ISBN: 1439835500

With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields.

Mathematics and Computation

Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
Total Pages: 434
Release: 2019-10-29
Genre: Computers
ISBN: 0691189137

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Handbook of Mathematical Formulas

Handbook of Mathematical Formulas
Author: Hans-Jochen Bartsch
Publisher: Academic Press
Total Pages: 529
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483267423

Handbook of Mathematical Formulas presents a compilation of formulas to provide the necessary educational aid. This book covers the whole field from the basic rules of arithmetic, via analytic geometry and infinitesimal calculus through to Fourier's series and the basics of probability calculus. Organized into 12 chapters, this book begins with an overview of the fundamental notions of set theory. This text then explains linear expression wherein the variables are only multiplied by constants and added to constants or expressions of the same kind. Other chapters consider a variety of topics, including matrices, statistics, linear optimization, Boolean algebra, and Laplace's transforms. This book discusses as well the various systems of coordinates in analytical geometry. The final chapter deals with algebra of logic and its development into a two-value Boolean algebra as switching algebra. This book is intended to be suitable for students of technical schools, colleges, and universities.