C*-algebras

C*-algebras
Author: Robert S. Doran
Publisher: American Mathematical Soc.
Total Pages: 436
Release: 1994-01-01
Genre: Mathematics
ISBN: 9780821855041

The book contains carefully written expository and research articles by leaders in the field, including a reprint of the original 1943 paper on C[* algebras by Gelfand and Neumark.

C*-Algebras

C*-Algebras
Author: Joachim Cuntz
Publisher: Springer Science & Business Media
Total Pages: 281
Release: 2012-12-06
Genre: Mathematics
ISBN: 364257288X

This book contains a collection of articles provided by the participants of the SFB-workshop on C*-algebras, March 8 - March 12, 1999 which was held at the Sonderforschungsbereich "Geometrische Strukturen in der reinen Mathematik" of the University of Münster, Germany. The aim of the workshop was to bring together leading experts in the theory of C* -algebras with promising young researchers in the field, and to provide a stimulating atmosphere for discussions and interactions between the participants. There were 19 one-hour lectures on various topics like - classification of nuclear C* -algebras, - general K-theory for C* -algebras, - exact C* -algebras and exact groups, - C*-algebras associated to (infinite) matrices and C*-correspondences, - noncommutative prob ability theory, - deformation quantization, - group C* -algebras and the Baum-Connes conjecture, giving a broad overview of the latest developments in the field, and serving as a basis for discussions. We, the organizers of the workshop, were greatly pleased with the excellence of the lectures and so were led to the idea of publishing the proceedings of the conference. There are basically two kinds of contributions. On one side there are several articles giving surveys and overviews on new developments and im portant results of the theory, on the other side one finds original articles with interesting new results.

An Introduction to the Classification of Amenable C*-algebras

An Introduction to the Classification of Amenable C*-algebras
Author: Huaxin Lin
Publisher: World Scientific
Total Pages: 336
Release: 2001
Genre: Mathematics
ISBN: 9789812799883

The theory and applications of C Oeu -algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C Oeu -algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C Oeu -algebras (up to isomorphism) by their K -theoretical data. It started with the classification of AT -algebras with real rank zero. Since then great efforts have been made to classify amenable C Oeu -algebras, a class of C Oeu -algebras that arises most naturally. For example, a large class of simple amenable C Oeu -algebras is discovered to be classifiable. The application of these results to dynamical systems has been established. This book introduces the recent development of the theory of the classification of amenable C Oeu -algebras OCo the first such attempt. The first three chapters present the basics of the theory of C Oeu -algebras which are particularly important to the theory of the classification of amenable C Oeu -algebras. Chapter 4 otters the classification of the so-called AT -algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C Oeu -algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH -algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C Oeu -algebras. Besides being as an introduction to the theory of the classification of amenable C Oeu -algebras, it is a comprehensive reference for those more familiar with the subject. Sample Chapter(s). Chapter 1.1: Banach algebras (260 KB). Chapter 1.2: C*-algebras (210 KB). Chapter 1.3: Commutative C*-algebras (212 KB). Chapter 1.4: Positive cones (207 KB). Chapter 1.5: Approximate identities, hereditary C*-subalgebras and quotients (230 KB). Chapter 1.6: Positive linear functionals and a Gelfand-Naimark theorem (235 KB). Chapter 1.7: Von Neumann algebras (234 KB). Chapter 1.8: Enveloping von Neumann algebras and the spectral theorem (217 KB). Chapter 1.9: Examples of C*-algebras (270 KB). Chapter 1.10: Inductive limits of C*-algebras (252 KB). Chapter 1.11: Exercises (220 KB). Chapter 1.12: Addenda (168 KB). Contents: The Basics of C Oeu -Algebras; Amenable C Oeu -Algebras and K -Theory; AF- Algebras and Ranks of C Oeu -Algebras; Classification of Simple AT -Algebras; C Oeu -Algebra Extensions; Classification of Simple Amenable C Oeu -Algebras. Readership: Researchers and graduate students in operator algebras."

Photons In Fock Space And Beyond (In 3 Volumes)

Photons In Fock Space And Beyond (In 3 Volumes)
Author: Reinhard Honegger
Publisher: World Scientific
Total Pages: 2353
Release: 2015-04-22
Genre: Science
ISBN: 9814618853

The three-volume major reference “Photons in Fock Space and Beyond” undertakes a new mathematical and conceptual foundation of the theory of light emphasizing mesoscopic radiation systems. The quantum optical notions are generalized beyond Fock representations where the richness of an infinite dimensional quantum field system, with its mathematical difficulties and theoretical possibilities, is fully taken into account. It aims at a microscopic formulation of a mesoscopic model class which covers in principle all stages of the generation and propagation of light within a unified and well-defined conceptual frame.The dynamics of the interacting systems is founded — according to original works of the authors — on convergent perturbation series and describes the developments of the quantized microscopic as well as the classical collective degrees of freedom at the same time. The achieved theoretical unification fits especially to laser and microwave applications inheriting objective information over quantum noise.A special advancement is the incorporation of arbitrary multiply connected cavities where ideal conductor boundary conditions are imposed. From there arises a new category of classical and quantized field parts, apparently not treated in Quantum Electrodynamics before. In combination with gauge theory, the additional “cohomological fields” explain topological quantum effects in superconductivity. Further applications are to be expected for optoelectronic and optomechanical systems.

L2-Invariants: Theory and Applications to Geometry and K-Theory

L2-Invariants: Theory and Applications to Geometry and K-Theory
Author: Wolfgang Lück
Publisher: Springer Science & Business Media
Total Pages: 604
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662046873

In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.

Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups

Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups
Author: Paul J. Sally (Jr.)
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 1994
Genre: Mathematics
ISBN: 0821851861

This book contains papers presented by speakers at the AMS-IMS-SIAM Joint Summer Research Conference on Conformal Field Theory, Topological Field Theory and Quantum Groups, held at Mount Holyoke College in June 1992. One group of papers deals with one aspect of conformal field theory, namely, vertex operator algebras or superalgebras and their representations. Another group deals with various aspects of quantum groups. Other topics covered include the theory of knots in three-manifolds, symplectic geometry, and tensor products. This book provides an excellent view of some of the latest developments in this growing field of research.

European Congress of Mathematics

European Congress of Mathematics
Author: Carles Casacuberta
Publisher: Birkhäuser
Total Pages: 630
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034882661

This is the second volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician.

Quanta of Maths

Quanta of Maths
Author: Institut des hautes études scientifiques (Paris, France)
Publisher: American Mathematical Soc.
Total Pages: 695
Release: 2010
Genre: Mathematics
ISBN: 0821852035

The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.