Bioresorbable Materials And Their Application In Electronics
Download Bioresorbable Materials And Their Application In Electronics full books in PDF, epub, and Kindle. Read online free Bioresorbable Materials And Their Application In Electronics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Xian Huang |
Publisher | : Cambridge University Press |
Total Pages | : 74 |
Release | : 2017-11-16 |
Genre | : Technology & Engineering |
ISBN | : 1108314007 |
Bioresorbable electronics that can dissolve away in aqueous environments and generate biologically safe products offer a revolutionary solution to replace the built-to-last electronics predominantly used in implanted devices and electronic gadgets. Their use can reduce the risk of surgical complications by minimizing the number of necessary surgeries, and prevent production of electronic waste by allowing rapid device recycling. This Element presents bioresorbable materials such as metals, polymers, inorganic compounds, and semiconductors that have been used to construct electronic devices, and analyzes their unique dissolution behaviors and biological effects. These materials are combined to yield representative devices including passive and active components and functional systems.
Author | : Kishor Kumar Sadasivuni |
Publisher | : Elsevier |
Total Pages | : 546 |
Release | : 2016-09-10 |
Genre | : Science |
ISBN | : 0081009747 |
Biopolymer Composites in Electronics examines the current state-of-the-art in the electronic application based on biopolymer composites. Covering the synthesis, dispersion of fillers, characterization and fabrication of the composite materials, the book will help materials scientists and engineers address the challenges posed by the increased use of biopolymeric materials in electronic applications. The influence of preparation techniques on the generation of micro, meso, and nanoscale fillers, and the effect of filler size and dispersion on various biopolymers are discussed in detail. Applications covered include sensors, actuators, optics, fuel cells, photovoltaics, dielectrics, electromagnetic shielding, piezoelectrics, flexible displays, and microwave absorbers. In addition, characterization techniques are discussed and compared, enabling scientists and engineers to make the correct choice of technique. This book is a 'one-stop' reference for researchers, covering the entire state-of-the-art in biopolymer electronics. Written by a collection of expert worldwide contributors from industry, academia, government, and private research institutions, it is an outstanding reference for researchers in the field of biopolymer composites for advanced technologies. - Enables researchers to keep up with the rapid development of biopolymer electronics, which offer light, flexible, and more cost-effective alternatives to conventional materials of solar cells, light-emitting diodes, and transistors - Includes thorough coverage of the physics and chemistry behind biopolymer composites, helping readers to become rapidly acquainted with the fiel - Provides in-depth information on the range of biopolymer applications in electronics, from printed flexible conductors and novel semiconductor components, to intelligent labels, large area displays, and solar panels
Author | : Inamuddin |
Publisher | : John Wiley & Sons |
Total Pages | : 885 |
Release | : 2022-09-13 |
Genre | : Technology & Engineering |
ISBN | : 1119905273 |
BIODEGRADABLE MATERIALS AND THEIR APPLICATIONS Biodegradable materials have ascended in importance in recent years and this book comprehensively discusses all facets and applications in 29 chapters making it a one-stop shop. Biodegradable materials have today become more compulsory because of increased environmental concerns and the growing demand for polymeric and plastic materials. Despite our sincere efforts to recycle used plastic materials, they ultimately tend to enter the oceans, which has led to grave pollution. It is necessary, therefore, to ensure that these wastes do not produce any hazards in the future. This has made an urgency to replace the synthetic material with green material in almost all possible areas of application. Biodegradable Materials and Their Applications covers a wide range of subjects and approaches, starting with an introduction to biodegradable material applications. Chapters focus on the development of various types of biodegradable materials with their applications in electronics, medicine, packaging, thermoelectric generations, protective equipment, films/coatings, 3D printing, disposable bioplastics, agriculture, and other commercial sectors. In biomedical applications, their use in the advancement of therapeutic devices like temporary implants, tissue engineering, and drug delivery vehicles are summarized. Audience Materials scientists, environmental and sustainability engineers, and any other researchers and graduate students associated with biodegradable materials.
Author | : Weidong Yang |
Publisher | : Cambridge University Press |
Total Pages | : 101 |
Release | : 2020-10-01 |
Genre | : Technology & Engineering |
ISBN | : 1108804055 |
Electronic skins are critical for many applications in human-machine-environment interactions. Tactile sensitivity over large areas can be especially applied to prosthetics. Moreover, the potential for wearables, interactive surfaces, and human robotics have propelled research in this area. In this Element, we provide an account and directional atlas of the progress in materials and devices for electronic skins, in the context of sensing principles and skin-like features. Additionally, we give an overview of essential electronic circuits and systems used in large-area tactile sensor arrays. Finally, we present the challenges and provide perspectives on future developments.
Author | : Yogeenth Kumaresan |
Publisher | : Cambridge University Press |
Total Pages | : 124 |
Release | : 2022-01-27 |
Genre | : Technology & Engineering |
ISBN | : 1108899587 |
Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.
Author | : Ye Zhou |
Publisher | : John Wiley & Sons |
Total Pages | : 304 |
Release | : 2021-03-24 |
Genre | : Technology & Engineering |
ISBN | : 3527826505 |
Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.
Author | : John A. Rogers |
Publisher | : John Wiley & Sons |
Total Pages | : 368 |
Release | : 2016-08-08 |
Genre | : Technology & Engineering |
ISBN | : 3527338314 |
Edited by the leaders in the fi eld, with chapters from highly renowned international researchers, this is the fi rst coherent overview of the latest in silicon nanomembrane research. As such, it focuses on the fundamental and applied aspects of silicon nanomembranes, ranging from synthesis and manipulation to manufacturing, device integration and system level applications, including uses in bio-integrated electronics, three-dimensional integrated photonics, solar cells, and transient electronics. The first part describes in detail the fundamental physics and materials science involved, as well as synthetic approaches and assembly and manufacturing strategies, while the second covers the wide range of device applications and system level demonstrators already achieved, with examples taken from electronics and photonics and from biomedicine and energy.
Author | : Mourad Elsobky |
Publisher | : Cambridge University Press |
Total Pages | : 92 |
Release | : 2021-10-14 |
Genre | : Technology & Engineering |
ISBN | : 1108983383 |
Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of conventional More-than-More Systems-in/on-Package (SiPs and SoPs) to the flexible electronics world. In HySiF, an economical implementation of flexible electronic systems is possible by integrating a minimum number of embedded silicon chips and a maximum number of on-foil components. Here, the complementary characteristics of CMOS SoCs and larger area organic and printed electronics are combined in a HySiF-compatible polymeric substrate. Within the HySiF scope, the fabrication process steps and the integration design rules with all the accompanying boundary conditions concerning material compatibility, surface properties, and thermal budget, are defined. This Element serves as an introduction to the HySiF concept. A summary of recent ultra-thin chip fabrication and flexible packaging techniques is provided. Several bendable electronic components are presented demonstrating the benefits of HySiF. Finally, prototypes of flexible wireless sensor systems that adopt the HySiF concept are demonstrated.
Author | : Sangita Das |
Publisher | : John Wiley & Sons |
Total Pages | : 1409 |
Release | : 2023-12-22 |
Genre | : Technology & Engineering |
ISBN | : 3527846689 |
Organic and Inorganic Materials Based Sensors A three-volume comprehensive overview of the development and applications of various novel potent molecular sensor frameworks In Organic and Inorganic Materials Based Sensors (3 Volume Set), a team of distinguished researchers delivers an interdisciplinary presentation of the engineering of high-performance biopolymer-based bio-nanocomposites, as well as strategies for the use of various molecules in the detection of environmentally important guest analytes. This three-volume book explores the most relevant technological developments in nanomaterials sensors and offers a broad and comprehensive overview of cutting-edge research on advanced materials in the fast-moving sensors industry. The authors explain the science behind nanomaterials for environmental remediation as well as the components and ingredients of the relevant materials. Readers will also find: Thorough introductions to sensory devices, polymer-based nano-biomaterials, and opto-electrochemical devices Comprehensive explorations of metal–organic frameworks, organic sensors, and organic–inorganic composite semiconductor sensors Practical discussions of vapochromic and vapoluminescent sensors Fulsome treatments of sensor ecosystems for health self-monitoring, including discussions of diabetes management Perfect for materials scientists, mechanical engineers, and analytical chemists, Organic and Inorganic Materials Based Sensors will also benefit inorganic and organic chemists, robotics engineers, and professionals working in the sensor industry.
Author | : Suman Lata Tripathi |
Publisher | : John Wiley & Sons |
Total Pages | : 273 |
Release | : 2023-10-18 |
Genre | : Technology & Engineering |
ISBN | : 1394186371 |
NANODEVICES FOR INTEGRATED CIRCUIT DESIGN Nanodevices are an integral part of many of the technologies that we use every day. It is a constantly changing and evolving area, with new materials, processes, and applications coming online almost daily. Increasing demand for smart and intelligent devices in human life with better sensing, communication and signal processing is increasingly pushing researchers and designers towards future design challenges based upon internet-of-things (IoT) applications. Several types of research have been done at the level of solid-state devices, circuits, and materials to optimize system performance with low power consumption. For suitable IoT-based systems, there are some key areas, such as the design of energy storage devices, energy harvesters, novel low power high-speed devices, and circuits. Uses of new materials for different purposes, such as semiconductors, metals, and insulators in different parts of devices, circuits, and energy sources, also play a significant role in smart applications of such systems. Emerging techniques like machine learning and artificial intelligence are also becoming a part of the latest developments in an electronic device and circuit design. This groundbreaking new book will, among other things, aid developing countries in updating their semiconductor industries in terms of IC design and manufacturing to avoid dependency on other countries. Likewise, as an introduction to the area for the new-hire or student, and as a reference for the veteran engineer in the field, it will be helpful for more developed countries in their pursuit of better IC design. It is a must have for any engineer, scientist, or other industry professional working in this area.