Handbook of Biomedical Optics

Handbook of Biomedical Optics
Author: David A. Boas
Publisher: CRC Press
Total Pages: 816
Release: 2016-04-19
Genre: Medical
ISBN: 1420090372

Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamental

Biomedical Optics

Biomedical Optics
Author: Lihong V. Wang
Publisher: John Wiley & Sons
Total Pages: 378
Release: 2012-09-26
Genre: Science
ISBN: 0470177004

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues are covered. The imaging modalities include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique are emphasized. A solutions manual is available for instructors; to obtain a copy please email the editorial department at [email protected].

Fundamentals of Biomedical Optics

Fundamentals of Biomedical Optics
Author: Caroline Boudoux
Publisher:
Total Pages:
Release: 2016-12-21
Genre:
ISBN: 9781366588265

Prof. Boudoux's book covers a comprehensive range of topics in biomedical optics and biophotonics. The organization of the material is well thought out, starting off with a toolbox of essential concepts that are general and yet detailed enough for a broad range of student backgrounds. The heart of the book covers the essential topics of tissue optics, as well as optical imaging system design concepts. With a well-balanced combination of engineering and physics, this text is an asset for students, and will be a valued long-term reference.

An Introduction to Biomedical Optics

An Introduction to Biomedical Optics
Author: Robert Splinter
Publisher: Taylor & Francis
Total Pages: 630
Release: 2006-12-13
Genre: Medical
ISBN: 1420011839

Many universities now offer a course in biomedical optics, but lack a textbook specifically addressing the topic. Intended to fill this gap, An Introduction to Biomedical Optics is the first comprehensive, introductory text describing both diagnostic and therapeutic optical methods in medicine. It provides the fundamental background needed for grad

An Introduction to Biomedical Optics

An Introduction to Biomedical Optics
Author: Robert Splinter
Publisher: CRC Press
Total Pages: 640
Release: 2006-12-13
Genre: Science
ISBN: 9780750309387

Many universities now offer a course in biomedical optics, but lack a textbook specifically addressing the topic. Intended to fill this gap, An Introduction to Biomedical Optics is the first comprehensive, introductory text describing both diagnostic and therapeutic optical methods in medicine. It provides the fundamental background needed for graduate students in biomedical and electrical engineering, physics, biology, and medicine to learn about several biomedical optics issues. The textbook is divided into three main sections: general optics theory, therapeutic applications of light, and diagnostic optical methods. Each chapter has different levels of detail to build students' knowledge from one level to the next. The first section covers the history of optics theory and the basic science behind light-tissue interactions. It also introduces the relevant approaches and approximations used to describe light propagation in turbid biological media. In the second section, the authors look more closely at light-tissue interactions and their applications in different medical areas, such as wound healing and tissue welding. The final section examines the various diagnostic methods that are employed using optical techniques. Throughout the text, the authors employ numerical examples of clinical and research requirements. Fulfilling the need for a concise biomedical optics textbook, An Introduction to Biomedical Optics addresses the theory and applications of this growing field.

High Resolution Imaging in Microscopy and Ophthalmology

High Resolution Imaging in Microscopy and Ophthalmology
Author: Josef F. Bille
Publisher: Springer
Total Pages: 407
Release: 2019-08-13
Genre: Medical
ISBN: 3030166384

This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.

Biomedical Optical Phase Microscopy and Nanoscopy

Biomedical Optical Phase Microscopy and Nanoscopy
Author: Natan T. Shaked
Publisher: Academic Press
Total Pages: 428
Release: 2012-11-05
Genre: Medical
ISBN: 0124158714

Written by leading optical phase microscopy experts, this book is a comprehensive reference to phase microscopy and nanoscopy techniques for biomedical applications, including differential interference contrast (DIC) microscopy, phase contrast microscopy, digital holographic microscopy, optical coherence tomography, tomographic phase microscopy, spectral-domain phase detection, and nanoparticle usage for phase nanoscopy The Editors show biomedical and optical engineers how to use phase microscopy for visualizing unstained specimens, and support the theoretical coverage with applied content and examples on designing systems and interpreting results in bio- and nanoscience applications. Provides a comprehensive overview of the principles and techniques of optical phase microscopy and nanoscopy with biomedical applications. Tips/advice on building systems and working with advanced imaging biomedical techniques, including interpretation of phase images, and techniques for quantitative analysis based on phase microscopy. Interdisciplinary approach that combines optical engineering, nanotechnology, biology and medical aspects of this topic. Each chapter includes practical implementations and worked examples.

Handbook of Biomedical Nonlinear Optical Microscopy

Handbook of Biomedical Nonlinear Optical Microscopy
Author: Barry R. Masters
Publisher: Oxford University Press
Total Pages: 895
Release: 2008-05-19
Genre: Science
ISBN: 0198036825

The Handbook of Biomedical Nonlinear Optical Microscopy provides comprehensive treatment of the theories, techniques, and biomedical applications of nonlinear optics and microscopy for cell biologists, life scientists, biomedical engineers, and clinicians. The chapters are separated into basic and advanced sections, and provide both textual and graphical illustrations of all key concepts. The more basic sections are aimed at life scientists without advanced training in physics and mathematics, and tutorials are provided for the more challenging sections. The first part of the Handbook introduces the historical context of nonlinear microscopy. The second part presents the nonlinear optical theory of two- and multiphoton excited fluorescence (TPE, MPE) spectroscopy, second and third harmonic generation (SHG, THG) spectroscopy, and coherent anti-Stokes Raman spectroscopy (CARS). The third part introduces modern microscopic and spectroscopic instrumentation and techniques that are based on nonlinear optics. The fourth part provides key applications of nonlinear microscopy to the biomedical area: neurobiology, immunology, tumor biology, developmental biology, dermatology, and cellular metabolism. There are also chapters on nonlinear molecular probes, cellular damage, and nanoprocessing.

Optical Polarization in Biomedical Applications

Optical Polarization in Biomedical Applications
Author: Valery V. Tuchin
Publisher: Springer Science & Business Media
Total Pages: 281
Release: 2006-10-12
Genre: Science
ISBN: 3540453210

Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

Biomedical Optical Imaging

Biomedical Optical Imaging
Author: James G. Fujimoto
Publisher: Oxford University Press
Total Pages: 435
Release: 2009-04-22
Genre: Science
ISBN: 0199722293

Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.